The influence of chronically administered host-targeted drugs on the gut microbiome remains less understood compared to antibiotics. We investigated repetitive exposure effects of three common antiseizure medications [carbamazepine (CBZ), valproic acid, and levetiracetam] on the gut microbial composition, resistome, and metabolome using microcosms constructed from feces of young children. Microcosms were established by cultivating feces for 24 h (C0).
View Article and Find Full Text PDFThe gut microbiota is a collection of symbiotic microorganisms in the gastrointestinal tract. Its sensitivity to chemicals with widespread exposure, such as phthalates, is little known. We aimed to investigate the impact of perinatal exposure to phthalates on the infant gut microbiota at 12 months of age.
View Article and Find Full Text PDFThe role of the gut microbiota in human health calls for a better understanding of its determinants. In particular, the possible effects of chemicals with widespread exposure other than pharmaceuticals are little known. Our aim was to characterize the sensitivity of the early-life gut microbiota to specific chemicals with possible antimicrobial action.
View Article and Find Full Text PDFMechanisms underlying the disruption of self-tolerance in acquired autoimmunity remain unclear. Immunoglobulin A (IgA) nephropathy is an acquired autoimmune disease where deglycosylated IgA1 (IgA subclass 1) auto-antigens are recognized by IgG auto-antibodies, forming immune complexes that are deposited in the kidneys, leading to glomerulonephritis. In the intestinal microbiota of patients with IgA nephropathy, there was increased relative abundance of mucin-degrading bacteria, including .
View Article and Find Full Text PDFWhole genome sequencing (WGS) at high-depth (30X) allows the accurate discovery of variants in the coding and non-coding DNA regions and helps elucidate the genetic underpinnings of human health and diseases. Yet, due to the prohibitive cost of high-depth WGS, most large-scale genetic association studies use genotyping arrays or high-depth whole exome sequencing (WES). Here we propose a cost-effective method which we call "Whole Exome Genome Sequencing" (WEGS), that combines low-depth WGS and high-depth WES with up to 8 samples pooled and sequenced simultaneously (multiplexed).
View Article and Find Full Text PDF