Publications by authors named "P Lencel"

Mitochondria are real sensors of the physiological status of tissues. After the death of an animal, they maintain physiological activity for several days. This activity is highly dependent on the availability of nutrients in the tissue.

View Article and Find Full Text PDF

The current methods used to routinely assess freshness in the fishing industry reflect more a state of spoilage than a state of freshness. Mitochondria, the seat of cellular respiration, undergo profound changes in post mortem tissues. The objective of this study was to demonstrate that mitochondrial activity constitutes a putative early fish freshness marker.

View Article and Find Full Text PDF

Assessment of microorganism viability is useful in many industrial fields. A large number of methods associated with the use of fluorescent probes have been developed, including fluorimetry, fluorescence microscopy, and cytometry. In this study, a microvolume spectrofluorometer was used to measure the membrane potential variations of .

View Article and Find Full Text PDF

The evaluation of freshness and freeze-thawing of fish fillets was carried out by assessment of autolysis of cells using a cytosolic enzyme lactate dehydrogenase. Autolysis plays an important role in spoilage of fish and postmortem changes in fish tissue are due to the breakdown of the cellular structures and release of cytoplasmic contents. The outflow of a cytosolic enzyme, lactate dehydrogenase, was studied in sea bream fillets and the Sparus aurata fibroblasts (SAF-1) cell-line during an 8day storage period at +4°C.

View Article and Find Full Text PDF

A highly branched (1 → 3,1 → 6)-β-D-glucan was isolated from the microalga Isochrysis galbana Parke (Isochrysidales, Haptophyta). The polysaccharide structure was analyzed by methylation and Smith degradation, as well as by ESI and MALDI TOF mass spectrometry and NMR spectroscopy. The glucan was shown to contain a (1 → 6)-linked backbone, where every residue is substituted at position 3 by Glc, which in turn may be substituted at C-6 by a single Glc or by rather short (up to tetrasaccharide) oligosaccharide chains.

View Article and Find Full Text PDF