Publications by authors named "P Lazarenko"

High-order harmonic generation (HHG) in solids opens new frontiers in ultrafast spectroscopy of carrier and field dynamics in condensed matter, picometer resolution structural lattice characterization and designing compact platforms for attosecond pulse sources. Nanoscale structuring of solid surfaces provides a powerful tool for controlling the spatial characteristics and efficiency of the harmonic emission. Here we study HHG in a prototypical phase-change material GeSbTe (GST).

View Article and Find Full Text PDF

Formation of laser-induced periodic surface structures (LIPSS) is known as a fast and robust method of functionalization of material surfaces. Of particular interest are LIPSS that manifest as periodic modulation of phase state of the material, as it implies reversibility of phase modification that constitute rewritable LIPSS, and recently was demonstrated for chalcogenide phase change materials (PCMs). Due to remarkable properties of chalcogenide PCMs─nonvolatality, prominent optical contrast and ns switching speed─such novel phase change LIPSS hold potential for exciting applications in all-optical tunable photonics.

View Article and Find Full Text PDF

This study demonstrates the ability to control the properties of TiO-CuO composite layers for photocatalytic applications by using a simple electrophoretic deposition method from isopropanol-based suspension. To obtain uniform layers with a controlled composition, the surfactant sodium lauryl sulfate was used, which influenced the electrophoretic mobility of the particles and the morphology of the deposited layers. The TiO-CuO composite layers with different CuO contents (1.

View Article and Find Full Text PDF

GeSbTe (GST225) looks to be a promising material for rewritable memory devices due to its relatively easy processing and high optical and electrophysical contrast for the crystalline and amorphous phases. In the present work, we combined the possibilities of crystallization and anisotropic structures fabrication using femtosecond laser treatment at the 1250 nm wavelength of 200 nm thin amorphous GST225 films on silicon oxide/silicon substrates. A raster treatment mode and photoexcited surface plasmon polariton generation allowed us to produce mutually orthogonal periodic structures, such as scanline tracks (the period is 120 ± 10 μm) and laser-induced gratings (the period is 1100 ± 50 nm), respectively.

View Article and Find Full Text PDF

A novel biologically active organic ligand L (N'-benzylidenepyrazine-2-carbohydrazonamide) and its three coordination compounds have been synthesized and structurally described. Their physicochemical and biological properties have been thoroughly studied. Cu(II), Zn(II), and Cd(II) complexes have been analyzed by F-AAS spectrometry and elemental analysis.

View Article and Find Full Text PDF