Waterlogging is expected to become a more prominent yield restricting stress for barley as rainfall frequency is increasing in many regions due to climate change. The duration of waterlogging events in the field is highly variable throughout the season, and this variation is also observed in experimental waterlogging studies. Such variety of protocols make intricate physiological responses challenging to assess and quantify.
View Article and Find Full Text PDFIn the last century, breeding programs have traditionally favoured yield-related traits, grown under high-input conditions, resulting in a loss of genetic diversity and an increased susceptibility to stresses in crops. Thus, exploiting understudied genetic resources, that potentially harbour tolerance genes, is vital for sustainable agriculture. Northern European barley germplasm has been relatively understudied despite its key role within the malting industry.
View Article and Find Full Text PDFDepression is a common mental health condition that often occurs in association with other chronic illnesses, and varies considerably in severity. Electronic Health Records (EHRs) contain rich information about a patient's medical history and can be used to train, test and maintain predictive models to support and improve patient care. This work evaluated the feasibility of implementing an environment for predicting mental health crisis among people living with depression based on both structured and unstructured EHRs.
View Article and Find Full Text PDFNaturally occurring plant cellulose, our most abundant renewable resource, consists of fibers of long polymer chains that are tightly packed in parallel arrays in either of two crystal phases collectively referred to as cellulose I. During mercerization, a process that involves treatment with sodium hydroxide, cellulose goes through a conversion to another crystal form called cellulose II, within which every other chain has remarkably changed direction. We designed a neutron diffraction experiment with deuterium labelling in order to understand how this change of cellulose chain direction is possible.
View Article and Find Full Text PDFFarmers and breeders aim to improve crop responses to abiotic stresses and secure yield under adverse environmental conditions. To achieve this goal and select the most resilient genotypes, plant breeders and researchers rely on phenotyping to quantify crop responses to abiotic stress. Recent advances in imaging technologies allow researchers to collect physiological data non-destructively and throughout time, making it possible to dissect complex plant responses into quantifiable traits.
View Article and Find Full Text PDF