Publications by authors named "P Lachance"

Disorientation is an early symptom of dementia, suggesting impairments in neural circuits responsible for head direction signaling. The anterodorsal thalamic nucleus (ADn) exhibits early and selective vulnerability to pathological misfolded forms of tau (ptau), a major hallmark of Alzheimer's disease and ageing. The ADn contains a high density of head direction (HD) cells; their disruption may contribute to spatial disorientation.

View Article and Find Full Text PDF

Recent experimental studies have discovered diverse spatial properties, such as head direction tuning and egocentric tuning, of neurons in the postrhinal cortex (POR) and revealed how the POR spatial representation is distinct from the retrosplenial cortex (RSC). However, how these spatial properties of POR neurons emerge is unknown, and the cause of distinct cortical spatial representations is also unclear. Here, we build a learning model of POR based on the pathway from the superior colliculus (SC) that has been shown to have motion processing within the visual input.

View Article and Find Full Text PDF

Complex sensory information arrives in the brain from an animal's first-person ('egocentric') perspective. However, animals can efficiently navigate as if referencing map-like ('allocentric') representations. The postrhinal (POR) and retrosplenial (RSC) cortices are thought to mediate between sensory input and internal maps, combining egocentric representations of physical cues with allocentric head direction (HD) information.

View Article and Find Full Text PDF

Navigating a complex world requires integration of multiple spatial reference frames, including information about one's orientation in both allocentric and egocentric coordinates. Combining these two information sources can provide additional information about one's spatial location. Previous studies have demonstrated that both egocentric and allocentric spatial signals are reflected by the firing of neurons in the rat postrhinal cortex (POR), an area that may serve as a hub for integrating allocentric head direction (HD) cell information with egocentric information from center-bearing and center-distance cells.

View Article and Find Full Text PDF

Head direction (HD) cells, which fire persistently when an animal's head is pointed in a particular direction, are widely thought to underlie an animal's sense of spatial orientation and have been identified in several limbic brain regions. Robust HD cell firing is observed throughout the thalamo-parahippocampal system, although recent studies report that parahippocampal HD cells exhibit distinct firing properties, including conjunctive aspects with other spatial parameters, which suggest they play a specialized role in spatial processing. Few studies, however, have quantified these apparent differences.

View Article and Find Full Text PDF