Publications by authors named "P L van Lent"

Yeast metabolism can be engineered to produce xenobiotic compounds, such as cannabinoids, the principal isoprenoids of the plant Cannabis sativa, through heterologous metabolic pathways. However, yeast cell factories continue to have low cannabinoid production. This study employed an integrated omics approach to investigate the physiological effects of cannabidiol on S.

View Article and Find Full Text PDF

Objectives: It is well-known that long-term osteoarthritis prognosis is not improved by corticosteroid treatments. Here we investigate what could underlie this phenomenon by measuring the short term corticosteroid response of OA-Mf.

Methods: We determined the genome-wide transcriptomic response to corticosteroids of end-stage osteoarthritic joint synovial macrophages (OA-Mf).

View Article and Find Full Text PDF

Objectives: Macrophages are key orchestrators of the osteoarthritis (OA)-associated inflammatory response. Macrophage phenotype is dependent on environmental cues like the inflammatory factor S100A8/A9. Here, we investigated how S100A9 exposure during monocyte-to-macrophage differentiation affects macrophage phenotype and function.

View Article and Find Full Text PDF

Background: Assembly algorithm choice should be a deliberate, well-justified decision when researchers create genome assemblies for eukaryotic organisms from third-generation sequencing technologies. While third-generation sequencing by Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio) has overcome the disadvantages of short read lengths specific to next-generation sequencing (NGS), third-generation sequencers are known to produce more error-prone reads, thereby generating a new set of challenges for assembly algorithms and pipelines. However, the introduction of HiFi reads, which offer substantially reduced error rates, has provided a promising solution for more accurate assembly outcomes.

View Article and Find Full Text PDF

Local and systemic low-grade inflammation, mainly involving the innate immune system, plays an important role in the development of OA. A receptor playing a key role in initiation of this inflammation is the pattern-recognition receptor Toll-like receptor 4 (TLR4). In the joint, various ligands for TLR4, many of which are damage-associated molecular patterns (DAMPs), are present that can activate TLR4 signalling.

View Article and Find Full Text PDF