The neonatal Fc receptor (FcRn) is the receptor responsible for bidirectional transport of immunoglobulin G (IgG) across cells, maintenance of IgG levels in serum, and assisting with antigen presentation. Unfortunately, little is known about FcRn in horses. Therefore, the objective of this study was to provide fundamental information regarding the location of FcRn in equine tissues.
View Article and Find Full Text PDFWe aimed to test the hypothesis that repeated muscle collections would impact mitochondrial function, antioxidant status, and markers of inflammation and muscle damage. Twenty-six horses (8 geldings, 18 mares; mean ± SD 9.5 ± 3.
View Article and Find Full Text PDFMechanical unloading during microgravity causes skeletal muscle atrophy and impairs mitochondrial energetics. The elevated production of reactive oxygen species (ROS) by mitochondria and Nox2, coupled with impairment of stress protection (e.g.
View Article and Find Full Text PDFSkeletal muscle is a highly dynamic organ that is essential for locomotion as well as endocrine regulation in all populations of horses. However, despite the importance of adequate muscle development and maintenance, the mechanisms underlying protein anabolism in horses on different diets, exercise programs, and at different life stages remain obscure. Mechanistic target of rapamycin (mTOR) is a key component of the protein synthesis pathway and is regulated by biological factors such as insulin and amino acid availability.
View Article and Find Full Text PDFThe element, Selenium (Se), has an essential nutritive and biological role as a trace mineral known primarily for its vital antioxidant functions as a constituent of the selenoenzyme, glutathione peroxidase. However, Se also has a much more global biological impact beyond antioxidant function. The objective of this review is to present an overview of prior research on the extra-antioxidant effects of Se with a key focus on skeletal muscle mitochondrial energetics.
View Article and Find Full Text PDF