Publications by authors named "P L Mateo"

Unlabelled: Indole derivatives are microbial metabolites of the tryptophan pathway involved in gut immune homeostasis. They bind to the aryl hydrocarbon receptor (AhR), thereby modulating development of intestinal group 3 innate lymphoid cells (ILC3) and subsequent interleukin-22 production. In mice, indole derivatives of the maternal microbiota can reach the milk and drive early postnatal ILC3 development.

View Article and Find Full Text PDF

Background: The heart expresses 2 main subtypes of cAMP-dependent protein kinase (PKA; type I and II) that differ in their regulatory subunits, RIα and RIIα. Embryonic lethality of RIα knockout mice limits the current understanding of type I PKA function in the myocardium. The objective of this study was to test the role of RIα in adult heart contractility and pathological remodeling.

View Article and Find Full Text PDF
Article Synopsis
  • Root exudates play a crucial role in influencing the plant's root microbiome through specialized metabolites, particularly benzoxazinoids in maize.
  • Researchers discovered that certain bacteria in the maize rhizosphere can metabolize these compounds, specifically MBOA (6-methoxybenzoxazolin-2(3H)-one), into AMPO (2-amino-7-methoxy-phenoxazin-3-one).
  • A gene cluster containing bxdA, which encodes a key enzyme for this conversion, was identified, highlighting how specific bacteria able to metabolize benzoxazinoids can thrive and influence the soil environment around maize roots.
View Article and Find Full Text PDF

3D Imaging of the human heart at high frame rate is of major interest for various clinical applications. Electronic complexity and cost has prevented the dissemination of 3D ultrafast imaging into the clinic. Row column addressed (RCA) transducers provide volumetric imaging at ultrafast frame rate by using a low electronic channel count, but current models are ill-suited for transthoracic cardiac imaging due to field-of-view limitations.

View Article and Find Full Text PDF

By releasing specialized metabolites, plants modify their environment. Whether and how specialized metabolites protect plants against toxic levels of trace elements is not well understood. We evaluated whether benzoxazinoids, which are released into the soil by major cereals, can confer protection against arsenic toxicity.

View Article and Find Full Text PDF