Publications by authors named "P L Kotula"

High-entropy materials (HEMs) emerged as promising candidates for a diverse array of chemical transformations, including CO utilization. However, traditional HEMs catalysts are nonporous, limiting their activity to surface sites. Designing HEMs with intrinsic porosity can open the door toward enhanced reactivity while maintaining the many benefits of high configurational entropy.

View Article and Find Full Text PDF

We report a spontaneous and hierarchical self-assembly mechanism of carbon dots prepared from citric acid and urea into nanowire structures with large aspect ratios (>50). Scattering-type scanning near-field optical microscopy (s-SNOM) with broadly tunable mid-IR excitation was used to interrogate details of the self-assembly process by generating nanoscopic chemical maps of local wire morphology and composition. s-SNOM images capture the evolution of wire formation and the complex interplay between different chemical constituents directing assembly over the nano- to microscopic length scales.

View Article and Find Full Text PDF

Heat-treated FeCo-based magnetic alloys were characterized using a suite of electron microscopy techniques to gain insight into their structural properties. Electron channeling contrast imaging (ECCI) in the scanning electron microscope (SEM) found unique grains towards the outer edge of a FeCo sample with nonuniform background contrast. High-magnification ECCI imaging of these nonuniform grains revealed a weblike network of defects that were not observed in standard uniform background contrast grains.

View Article and Find Full Text PDF

Understanding and controlling nanoscale interface phenomena, such as band bending and secondary phase formation, is crucial for electronic device optimization. In granular metal (GM) studies, where metal nanoparticles are embedded in an insulating matrix, the importance of interface phenomena is frequently neglected. We demonstrate that GMs can serve as an exemplar system for evaluating the role of secondary phases at interfaces through a combination of x-ray photoemission spectroscopy (XPS) and electrical transport studies.

View Article and Find Full Text PDF

High-Entropy Alloys (HEAs) are proposed as materials for a variety of extreme environments, including both fission and fusion radiation applications. To withstand these harsh environments, materials processing must be tailored to their given application, now achieved through additive manufacturing processes. However, radiation application opportunities remain limited due to an incomplete understanding of the effects of irradiation on HEA performance.

View Article and Find Full Text PDF