Cell-cell adhesion in endothelial monolayers is tightly controlled and crucial for vascular integrity. Recently, we reported on the importance of fast protein turnover for maintenance of endothelial barrier function. Specifically, continuous ubiquitination and degradation of the Rho GTPase RhoB is crucial to preserve quiescent endothelial integrity.
View Article and Find Full Text PDFEndothelial cells (ECs) line the inner surface of all blood vessels and form a barrier that facilitates the controlled transfer of nutrients and oxygen from the circulatory system to surrounding tissues. Exposed to both laminar and turbulent blood flow, ECs are continuously subject to differential mechanical stimulation. It has been well established that the shear stress associated with laminar flow (LF) is atheroprotective, while shear stress in areas with turbulent flow (TF) correlates with EC dysfunction.
View Article and Find Full Text PDFIron is hypothesized to be one of the contributors to cardiovascular disease and its levels in the circulation may correlate with cardiovascular risk. The aim of this study is to investigate the mechanisms that underlie the effects of iron on the barrier function of primary human endothelium. We used Human Umbilical Vein Endothelial Cells (HUVEC) to investigate the effects of Fe using electric cell-substrate impedance sensing, microscopy, western blot and immunofluorescence microscopy.
View Article and Find Full Text PDFDrug development for neurological diseases is greatly impeded by the presence of the blood-brain barrier (BBB). We and others previously reported on extravasation of micrometer-sized particles from the cerebral microcirculation - across the BBB - into the brain tissue over the course of several weeks. This mechanism could potentially be used for sustained parenchymal drug delivery after extravasation of biodegradable microspheres.
View Article and Find Full Text PDF