Background: News media coverage of antimask protests, COVID-19 conspiracies, and pandemic politicization has overemphasized extreme views but has done little to represent views of the general public. Investigating the public's response to various pandemic restrictions can provide a more balanced assessment of current views, allowing policy makers to craft better public health messages in anticipation of poor reactions to controversial restrictions.
Objective: Using data from social media, this infoveillance study aims to understand the changes in public opinion associated with the implementation of COVID-19 restrictions (eg, business and school closures, regional lockdown differences, and additional public health restrictions, such as social distancing and masking).
A series of potent N-(aralkyl-, arylcycloalkyl-, and heteroaryl-acyl)-4-biphenylalanine VLA-4 antagonists was prepared by rapid analogue methods using solid-phase chemistry. Further optimization led to several highly potent compounds (IC(50) <1 nM). Evaluation of rat pharmacokinetic revealed generally high clearance.
View Article and Find Full Text PDFAcylated beta-amino acids are described as potent, specific and orally bioavailable antagonists of VLA-4. The initial lead was identified from a combinatorial library. Subsequent optimization using a traditional medicinal chemistry approach led to significant improvement in potency (up to 8-fold) while maintaining good pharmacokinetic properties.
View Article and Find Full Text PDFBioorg Med Chem Lett
October 2001
Directed screening of a carboxylic acid-containing combinatorial library led to the discovery of potent inhibitors of the integrin VLA-4. Subsequent optimization by solid-phase synthesis afforded a series of sulfonylated dipeptide inhibitors with structural components that when combined in a single hybrid molecule gave a sub-nanomolar inhibitor as a lead for medicinal chemistry. Preliminary metabolic studies led to the discovery of substituted biphenyl derivatives with low picomolar activities.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2000
A series of substituted 2-aminopyridines was prepared and evaluated as inhibitors of human nitric oxide synthases (NOS). 4,6-Disubstitution enhanced both potency and specificity for the inducible NOS with the most potent compound having an IC50 of 28 nM.
View Article and Find Full Text PDF