Publications by authors named "P L Batten"

Nurse staffing is linked to safety, quality, and experience outcomes. In the context of the COVID-19 pandemic, staffing has become more critical as overwhelming demand has met diminishing supply of healthy nurses, capacity for care, and the innovation necessary to deliver optimal quality and experience to patients and the people who care for them. Press Ganey data scientists, along with industry experts, sought to evaluate staffing before the pandemic and its effects on clinical quality, experience, and nurse engagement.

View Article and Find Full Text PDF

Although recent progress in cardiovascular tissue engineering has generated great expectations for the exploitation of stem cells to restore cardiac form and function, the prospects of a common mass-produced cell resource for clinically viable engineered tissues and organs remain problematic. The refinement of stem cell culture protocols to increase induction of the cardiomyocyte phenotype and the assembly of transplantable vascularized tissue are areas of intense current research, but the problem of immune rejection of heterologous cell type poses perhaps the most significant hurdle to overcome. This article focuses on the potential advantages and problems encountered with various stem cell sources for reconstruction of the damaged or failing myocardium or heart valves and also discusses the need for integrating advances in developmental and stem cell biology, immunology and tissue engineering to achieve the full potential of cardiac tissue engineering.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are a promising candidate cell for tissue engineering. Magnetic resonance imaging (MRI) has been proven effective in visualizing iron-labeled stem cells; however, the efficiency of this approach for visualization of cells seeded on scaffolds intended for use as tissue-engineered heart valves has not been assessed. MSCs were labeled by incubating for 48 h with ferumoxide and poly-L-lysine as transfecting agent.

View Article and Find Full Text PDF

Background And Aim Of The Study: Human mesenchymal stem cells (MSCs) are a potential cell source for the tissue engineering of biological structures, including cardiac valves. A comprehensive, phenotypic analysis of MSCs and, for the latter, their comparison with valve interstitial cells (ICs) is therefore essential.

Methods: Isolates of bone marrow-derived human MSCs and human cardiac valve ICs were extensively phenotyped for their expression of membrane proteins involved in adhesion and cell-cell communication, cytoskeletal components, extracellular matrix (ECM) proteins and gene expression of WNT/FZD/SFRP/DKK/LRP family members.

View Article and Find Full Text PDF

To generate an ''off the shelf'' tissue-engineered heart valve, the cells would need to be of allogeneic origin. Here, we report the possibility of using human bone marrow-derived mesenchymal stem cells (MSCs) as a suitable allogeneic cell source for tissue-engineered heart valves. Proliferative responses of primary and primed CD4+ T cells to allogeneic MSCs were examined.

View Article and Find Full Text PDF