Inhibitor of apoptosis proteins (IAPs) act as endogenous inhibitors of active caspases. Drosophila IAP1 (DIAP1) activity is required to keep cells from undergoing apoptosis. The central cell death regulators Reaper and Hid induce apoptosis very rapidly by inhibiting DIAP1 function.
View Article and Find Full Text PDFThe genetic tools available in Drosophila have facilitated our understanding of how apoptosis is regulated and executed in the context of the developing organism. All embryonic apoptosis is initiated by the activity of three genes, rpr, grim and hid. Each of these genes is independently regulated, allowing developmental apoptosis to be finely controlled.
View Article and Find Full Text PDFThe development of the Drosophila embryo into an adult fly is a process that integrates cell proliferation and differentiation with programmed cell death, or apoptosis. Apoptosis is an evolutionarily conserved process that is controlled in the developing fly by the products of the genes reaper, grim, and hid. We discuss the role of programmed cell death in the establishment and maintenance of correct patterning in the embryo, and examine the coordination of apoptosis with the hormonally controlled degeneration of larval tissues during metamorphosis.
View Article and Find Full Text PDFTpr is a 270-kD coiled-coil protein localized to intranuclear filaments of the nuclear pore complex (NPC). The mechanism by which Tpr contributes to the structure and function of the nuclear pore is currently unknown. To gain insight into Tpr function, we expressed the full-length protein and several subdomains in mammalian cell lines and examined their effects on nuclear pore function.
View Article and Find Full Text PDF