Publications by authors named "P Kuegler"

Background: Congenital ear deformities occur in 5 % of all newborns. Molding of the ear is possible during the first six weeks of life because of the maternal hormones which are still circulating in the newborns. For several years we have been using the EarWell™ Correction System, which allows us to correct ear deformities within the first weeks of life.

View Article and Find Full Text PDF

The directed generation of pure astrocyte cultures from pluripotent stem cells has proven difficult. Generation of defined pluripotent-stem-cell derived astrocytes would allow new approaches to the investigation of plasticity and heterogeneity of astrocytes. We here describe a two-step differentiation scheme resulting in the generation of murine embryonic stem cell (mESC) derived astrocytes (MEDA), as characterized by the upregulation of 19 astrocyte-associated mRNAs, and positive staining of most cells for GFAP (glial fibrillary acidic protein), aquaporin-4 or glutamine synthetase.

View Article and Find Full Text PDF

Perinatal exposure to low doses of methylmercury (MeHg) can cause adult neurological symptoms. Rather than leading to a net cell loss, the toxicant is assumed to alter the differentiation and neuronal functions such as catecholaminergic transmission. We used neuronally differentiating murine embryonic stem cells (mESC) to explore such subtle toxicity.

View Article and Find Full Text PDF

As neuronal differentiation of embryonic stem cells (ESCs) recapitulates embryonic neurogenesis, disturbances of this process may model developmental neurotoxicity (DNT). To identify the relevant steps of in vitro neurodevelopment, we implemented a differentiation protocol yielding neurons with desired electrophysiological properties. Results from focussed transcriptional profiling suggested that detection of non-cytotoxic developmental disturbances triggered by toxicants such as retinoic acid (RA) or cyclopamine was possible.

View Article and Find Full Text PDF

Developmental neurotoxicity (DNT) is a serious concern for environmental chemicals, as well as for food and drug constituents. Animal-based DNT models have relatively low sensitivity, and they are burdened by high work-load, cost and animal ethics. Murine embryonic stem cells (mESC) recapitulate several critical processes involved in the development of the nervous system if they are induced to differentiate into neural cells.

View Article and Find Full Text PDF