Publications by authors named "P Krist"

Photonuclear reactions are gaining importance due to their influence on the shielding and activation of components of widely spread accelerators. Therefore, there is a need for accurate data describing photonuclear reactions. The MT25 microtron operated at NPI was used for validation of cross section in the bremsstrahlung.

View Article and Find Full Text PDF

Raman mapping microspectroscopy was used as an advantageous high spatial resolution method for detailed assessment of the structure of radiation-induced halos in bituminous coal (Upper Paleozoic) with numerous inclusions of uraninite and coffinite. The uranium content in inclusions in the samples studied ranged from 40 to 50 wt%. Raman structural parameters such as full width at half maximum, the positions of the D-band and G-band peaks and their area ratios were calculated, and these correlated well with vitrinite reflectance.

View Article and Find Full Text PDF

We describe a conceptually new, microfibrous, biodegradable functional material prepared from a modified storage polysaccharide also present in humans (glycogen) showing strong potential as direct-contact dressing/interface material for wound healing. Double bonds were introduced into glycogen via allylation and were further exploited for crosslinking of the microfibers. Triple bonds were introduced by propargylation and served for further click functionalization of the microfibers with bioactive peptide.

View Article and Find Full Text PDF

The annual effective doses of aircrew members often exceed the limit of 1 mSv for the public due to the increased level of cosmic radiation at the flight altitudes, and thus, it is recommended to monitor them. Aircrew dosimetry is usually performed using special computer programs mostly based on results of Monte Carlo simulations. Contemporary, detectors are used mostly for validation of these computer codes, verification of effective dose calculations and for research purposes.

View Article and Find Full Text PDF

The ability to tailor mechanical properties and architecture is crucial in creating macroporous hydrogel scaffolds for tissue engineering. In the present work, a technique for the modification of the pore size and stiffness of acrylamide-based cryogels is demonstrated via the regulation of an electron beam irradiation dose. The samples were characterized by equilibrium swelling measurements, light and scanning electron microscopy, mercury porosimetry, Brunauer-Emmett-Teller surface area analysis, and stiffness measurements.

View Article and Find Full Text PDF