The use of conventional methods for the treatment of cancer, such as chemotherapy or radiotherapy, and approaches such as brachytherapy in conjunction with the unique properties of nanoparticles could enable the development of novel theranostic agents. The aim of our current study was to evaluate the potential of iron oxide nanoparticles, coated with alginic acid and polyethylene glycol, functionalized with the chemotherapeutic agent doxorubicin and the monoclonal antibody bevacizumab, to serve as a nanoradiopharmaceutical agent against breast cancer. Direct radiolabeling with the therapeutic isotope Lutetium-177 (Lu) resulted in an additional therapeutic effect.
View Article and Find Full Text PDFViral pneumonia caused by highly infectious SARS-CoV-2 poses a higher risk to older people and those who have underlying health conditions, including Alzheimer's disease. In this work we present newly designed tacrine-based radioconjugates with physicochemical and biological properties that are crucial for the potential application as diagnostic radiopharmaceuticals. A set of ten tacrine derivatives was synthesized, labelled with gallium-68 and fully characterized in the context of their physicochemical properties.
View Article and Find Full Text PDFCurrently, the search for promising NK1R-positive tumor-targeting radiopharmaceuticals based on the structure of small molecular antagonists of neurokinin-1 receptor can be observed. Following this trend, we continued our evaluation of aprepitant-based Lu-radioconjugates in terms of future oncological applications. For this purpose, three novel aprepitant homologues were synthesized to broaden the previously obtained derivative portfolio, functionalized with the DOTA chelator and labeled with Ga and Lu.
View Article and Find Full Text PDFLocoregionally administered, NK1 receptor (NK1R) targeted radionuclide therapy is a promising strategy for the treatment of glioblastoma multiforme. So far, the radiopharmaceuticals used in this approach have been based on the endogenous agonist of NK1R, Substance P or on its close analogues. Herein, we used a well-known, small molecular NK1R antagonist, L732,138, as the basis for the radiopharmaceutical vector.
View Article and Find Full Text PDFThis paper presents the application of ciprofloxacin as a biologically active molecule (vector) for delivering diagnostic radiopharmaceuticals to the sites of bacterial infection. Ciprofloxacin-based radioconjugates containing technetium-99m or gallium-68 radionuclides were synthesised, and their physicochemical (stability, lipophilicity) and biological (binding study to and ) properties were investigated. Both the tested radiopreparations met the requirements for radiopharmaceuticals, and technetium-99m-labelled ciprofloxacin turned out to be a good radiotracer for the tomography of diabetic foot syndrome using SPECT.
View Article and Find Full Text PDF