Publications by authors named "P Kovermann"

In the central nervous system of vertebrates, glutamate serves as the primary excitatory neurotransmitter. However, in the retina, glutamate released from photoreceptors causes hyperpolarization in post-synaptic ON-bipolar cells through a glutamate-gated chloride current, which seems paradoxical. Our research reveals that this current is modulated by two excitatory glutamate transporters, EAAT5b and EAAT7.

View Article and Find Full Text PDF

and encode the glial glutamate transporters EAAT2 and EAAT1, which are not only the predominant glutamate uptake carriers in our brain, but also function as anion channels. Two homologous mutations, which predict substitutions of prolines in the center of the fifth transmembrane helix by arginine (P289R EAAT2, P290R EAAT1), have been identified in patients with epileptic encephalopathy () or with episodic ataxia type 6 (). Both mutations have been shown to impair glutamate uptake and to increase anion conduction.

View Article and Find Full Text PDF

Excitatory amino acid transporters (EAATs) optimize the temporal resolution and energy demand of mammalian excitatory synapses by quickly removing glutamate from the synaptic cleft into surrounding neuronal and glial cells and ensuring low resting glutamate concentrations. In addition to secondary active glutamate transport, EAATs also function as anion channels. The channel function of these transporters is conserved in all homologs ranging from archaebacteria to mammals; however, its physiological roles are insufficiently understood.

View Article and Find Full Text PDF

Objective: Mutations in the gene solute carrier family member 1A2 (SLC1A2) encoding the excitatory amino acid transporter 2 (EAAT2) are associated with severe forms of epileptic encephalopathy. EAAT2 is expressed in glial cells and presynaptic nerve terminals and represents the main l-glutamate uptake carrier in the mammalian brain. It does not only function as a secondary active glutamate transporter, but also as an anion channel.

View Article and Find Full Text PDF

High water permeabilities permit rapid adjustments of glial volume upon changes in external and internal osmolarity, and pathologically altered intracellular chloride concentrations ([Cl]) and glial cell swelling are often assumed to represent early events in ischemia, infections, or traumatic brain injury. Experimental data for glial [Cl] are lacking for most brain regions, under normal as well as under pathological conditions. We measured [Cl] in hippocampal and neocortical astrocytes and in hippocampal radial glia-like (RGL) cells in acute murine brain slices using fluorescence lifetime imaging microscopy with the chloride-sensitive dye MQAE at room temperature.

View Article and Find Full Text PDF