Publications by authors named "P Kooijman"

Background: The physical and the social environment are important predictors of healthy weight, especially in low socioeconomic position (SEP) neighborhoods. Many Dutch municipalities have implemented a healthy weight approach (HWA). Yet, there is room for improvement.

View Article and Find Full Text PDF

Distinguishing isomeric saccharides poses a major challenge for analytical workflows based on (liquid chromatography) mass spectrometry (LC-MS). In recent years, many studies have proposed infrared ion spectroscopy as a possible solution as the orthogonal, spectroscopic characterization of mass-selected ions can often distinguish isomeric species that remain unresolved using conventional MS. However, the high conformational flexibility and extensive hydrogen bonding in saccharides cause their room-temperature fingerprint infrared spectra to have broad features that often lack diagnostic value.

View Article and Find Full Text PDF

We used next-generation metabolic screening to identify new biomarkers for improved diagnosis and pathophysiological understanding of glucose transporter type 1 deficiency syndrome (GLUT1DS), comparing metabolic cerebrospinal fluid (CSF) profiles from 12 patients to those of 116 controls. This confirmed decreased CSF glucose and lactate levels in patients with GLUT1DS and increased glutamine at group level. We identified three novel biomarkers significantly decreased in patients, namely gluconic + galactonic acid, xylose-α1-3-glucose, and xylose-α1-3-xylose-α1-3-glucose, of which the latter two have not previously been identified in body fluids.

View Article and Find Full Text PDF

Desorption electrospray ionisation-mass spectrometry imaging (DESI-MSI) is a powerful imaging technique for the analysis of complex surfaces. However, the often highly complex nature of biological samples is particularly challenging for MSI approaches, as options to appropriately address molecular complexity are limited. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) offers superior mass accuracy and mass resolving power, but its moderate throughput inhibits broader application.

View Article and Find Full Text PDF

Mass spectrometry imaging (MSI) is a rapidly emerging field that is continually finding applications in new and exciting areas. The ability of MSI to measure the spatial distribution of molecules at or near the surface of complex substrates makes it an ideal candidate for many applications, including those in the sphere of materials chemistry. Continual development and optimization of both ionization sources and analyzer technologies have resulted in a wide array of MSI tools available, both commercially available and custom-built, with each configuration possessing inherent strengths and limitations.

View Article and Find Full Text PDF