Publications by authors named "P Komar"

We present an experimental and theoretical analysis of chromatic aberration in a monolithic metasurface focusing mirror. The planar focusing mirror is based on a monolithic high contrast grating made from GaAs, designed for a wavelength of 980 nm. Light is focused on the high refractive index side of the mirror.

View Article and Find Full Text PDF

We present the first experimental demonstration of a planar focusing monolithic subwavelength grating mirror. The grating is formed on the surface of GaAs and focuses 980 nm light in one dimension on the high-refractive-index side of the mirror. According to our measurements, the focal length is 475 μm (300 μm of which is GaAs) and the numerical aperture is 0.

View Article and Find Full Text PDF

Here, we describe in detail a procedure for the numerical design of planar focusing mirrors based on monolithic high contrast gratings. We put a special emphasis on the reconstruction of the hyperbolic phase of these mirrors and we conclude that the phase does not have to be perfectly mimicked to obtain a focusing reflector. We consider here the grating mirrors that focus light not in the air but in the GaAs substrate and we compare them with conventional parabolic reflectors of corresponding dimensions.

View Article and Find Full Text PDF

DNA-encoded libraries (DELs) are large, pooled collections of compounds in which every library member is attached to a stretch of DNA encoding its complete synthetic history. DEL-based hit discovery involves affinity selection of the library against a protein of interest, whereby compounds retained by the target are subsequently identified by next-generation sequencing of the corresponding DNA tags. When analyzing the resulting data, one typically assumes that sequencing output (i.

View Article and Find Full Text PDF

The human reference genome serves as the foundation for genomics by providing a scaffold for alignment of sequencing reads, but currently only reflects a single consensus haplotype, thus impairing analysis accuracy. Here we present a graph reference genome implementation that enables read alignment across 2,800 diploid genomes encompassing 12.6 million SNPs and 4.

View Article and Find Full Text PDF