Publications by authors named "P Kisielow"

Demonstration that immature CD4 + 8+ thymocytes contain T cell precursors that are subjected to positive and negative selection was the major step towards understanding how the adaptive immune system acquires the ability to distinguish foreign or abnormal (mutated or infected) self-cells from normal (healthy) cells. In the present review, the roles of TCR, CD4, CD8, and MHC molecules in intrathymic selection and some of the crucial experiments that contributed to the solution of the great immunological puzzle of self/nonself discrimination are described in an historical perspective. Recently, these experiments were highlighted by the immunological community by awarding the 2016 Novartis Prize for Immunology to Philippa Marrack, John Kappler, and Harald von Boehmer.

View Article and Find Full Text PDF

The RAG-1 and RAG-2 genes form a recombinase complex that is indispensable for V(D)J recombination, which generates the diversity of immunoglobulins and T-cell receptors. It is widely accepted that the presence of RAGs in the genomes of jawed vertebrates and other lineages is a result of the horizontal transfer of a mobile genetic element. While a substantial amount of evidence has been gathered that clarifies the nature of the RAG transposon, far less attention has been paid to the genomic site of its integration in various host organisms.

View Article and Find Full Text PDF

Crosslinking of glucocorticoid-induced TNF family-related receptor (GITR) with agonist antibodies restores cancer immunity by enhancing effector T cell (Teff) responses while interfering with intra-tumor regulatory T cell (Treg) stability and/or accumulation. However, how anti-GITR antibody infusion changes T cell receptor (TCR) repertoire of Teffs and Tregs engaged in anti-tumor immune response is unclear. Here, we used a transgenic mouse model (TCRmini) where T cells express naturally generated but limited TCR repertoire to trace the fate of individual T cells recognizing B16 melanoma in tumor-bearing mice, treated or non-treated with an anti-GITR monoclonal antibody DTA-1.

View Article and Find Full Text PDF

NWC is a third gene within recombination activating gene (RAG) locus, which unlike RAG genes is ubiquitously expressed and encodes a unique protein containing three strongly evolutionarily conserved domains not found in any other known protein. To get insight into its function we identified several proteins co-immunoprecipitating with NWC protein and generated new NWC-deficient mice. Here, we present evidence that unlike many other ubiquitously expressed evolutionarily conserved proteins, functional inactivation of NWC does not cause any gross developmental, physiological or reproductive abnormalities and that under physiological conditions NWC may be involved in assembling and functioning of cilia, cell surface organelles found on nearly every eukaryotic cell.

View Article and Find Full Text PDF

Helios transcription factor and semaphorin receptor Nrp-1 were originally described as constitutively expressed at high levels on CD4+Foxp3+ T regulatory cells of intrathymic origin (tTregs). On the other hand, CD4+Foxp3+ Tregs generated in the periphery (pTregs) or induced ex vivo (iTregs) were reported to express low levels of Helios and Nrp-1. Soon afterwards the reliability of Nrp-1 and Helios as markers discriminating between tTregs and pTregs was questioned and until now no consensus has been reached.

View Article and Find Full Text PDF