Publications by authors named "P Kingsley-Hickman"

Hexose monophosphate shunt (HMPS) activity can be measured with 1H nuclear magnetic resonance spectroscopy or gas chromatography--mass spectrometry by monitoring the differential production of [3-13C]lactate and [3-12C]lactate from the degradation of [1-13C]-glucose. Errors in measurement of HMPS activity can arise from unlabeled lactate precursors, by recycling of HMPS products, and by incomplete fractional enrichment of labeled glucose. A method utilizing cultured cells incubated with [1-13C]glucose in parallel with incubations using [6-13C]glucose to correct for all these problems is presented.

View Article and Find Full Text PDF

Mitochondrial uncoupling is often invoked as a mechanism underlying cellular dysfunction; however, it has not been possible to study this phenomenon directly in intact cells and tissues. In this paper, we report direct evaluation of mitochondrial uncoupling in the intact myocardium using 31P NMR magnetization transfer techniques. Langendorff perfused rat hearts were exposed to either a known uncoupler, 2,4-dinitrophenol (DNP), or a potential uncoupler, octanoate.

View Article and Find Full Text PDF

The effects of ischemia on mitochondrial function and the unidirectional rate of ATP synthesis (Pi----ATP rate) were studied using a Langendorff-perfused heart preparation and 31P NMR spectroscopy. There was significant postischemic depression of mechanical function assessed as the heart rate pressure product, and the myocardial oxygen consumption rate at a given rate pressure product was elevated. Experiments performed on glucose- and pyruvate-perfused hearts demonstrated the presence of a large contribution to the unidirectional Pi----ATP rate catalyzed by glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase.

View Article and Find Full Text PDF

A study was undertaken to examine the effects of glucose versus pyruvate as the sole substrate following severe myocardial ischemia. Glycolysis usually contributes only a small amount to total ATP production and may be rate limiting in providing tricarboxylic acid (TCA) cycle substrates. Consequently, pyruvate may be a more effective substrate by bypassing glycolysis to feed directly to the TCA cycle and oxidative phosphorylation.

View Article and Find Full Text PDF

The origin of the nuclear magnetic resonance (NMR)-measurable ATP in equilibrium Pi exchange and whether it can be used to determine net oxidative ATP synthesis rates in the intact myocardium were examined by detailed measurements of ATP in equilibrium Pi exchange rates in both directions as a function of the myocardial oxygen consumption rate (MVO2) in (1) glucose-perfused, isovolumic rat hearts with normal glycolytic activity and (2) pyruvate-perfused hearts where glycolytic activity was reduced or eliminated either by depletion of their endogenous glycogen or by use of the inhibitor iodoacetate. In glucose-perfused hearts, the Pi----ATP rate measured by the conventional two-site saturation transfer (CST) technique remained constant while MVO2 was increased approximately 2-fold. When the glycolytic activity was reduced, the Pi----ATP rate decreased significantly, demonstrating the existence of a significant glycolytic contribution.

View Article and Find Full Text PDF