Publications by authors named "P Keuschnigg"

Background: Misalignment or double-contouring artifacts can appear in high-resolution 3D cone beam computed tomography (CBCT) images, potentially indicating geometric accuracy issues in the projection data. Such artifacts may go unnoticed in low-resolution images and could be associated with changes in the focal spot (FS) position.

Purpose: High-resolution 3D-CBCT imaging by a mobile imaging device with a large gantry clearance offers more versatility for clinical workflows in image-guided brachytherapy (IGBT), intraoperative radiation therapy (IORT), and spinal, as well as maxillofacial surgery.

View Article and Find Full Text PDF

Purpose: Couch-mounted cone-beam computed tomography (CBCT) imaging devices with independently rotatable x-ray source and flat-panel detector arms for acquisitions of arbitrary regions of interest (ROI) have recently been introduced in image-guided radiotherapy (IGRT). This work analyzes mechanical limitations and gravity-induced effects influencing the geometric accuracy of images acquired with arbitrary angular constellations of source and detector in nonisocentric trajectories, which is considered essential for IGRT. In order to compensate for geometric inaccuracies of this modality, a 9-degrees-of-freedom (9-DOF) flexmap correction approach is presented, focusing especially on the separability of the flexmap parameters of the independently movable components of the device.

View Article and Find Full Text PDF

Image guidance during highly conformal radiotherapy requires accurate geometric calibration of the moving components of the imager. Due to limited manufacturing accuracy and gravity-induced flex, an x-ray imager's deviation from the nominal geometrical definition has to be corrected for. For this purpose a ball bearing phantom applicable for nine degrees of freedom (9-DOF) calibration of a novel cone-beam computed tomography (CBCT) scanner was designed and validated.

View Article and Find Full Text PDF
Article Synopsis
  • The study proposes a straightforward method for calibrating and validating kilo-voltage cone-beam CT (kV CBCT) models using experimental data.
  • Calibration involves a two-step process examining both the source (photon energy spectrum) and the detector (pixel intensity based on photon energy).
  • The results show that the method yields high accuracy, with average deviations from experimental data of less than 1.5% for the sources and 4% for energy deposition in detectors across three different kV CBCT systems.
View Article and Find Full Text PDF

Purpose: A new cone-beam CT scanner for image-guided radiotherapy (IGRT) can independently rotate the source and the detector along circular trajectories. Existing reconstruction algorithms are not suitable for this scanning geometry. The authors propose and evaluate a three-dimensional (3D) filtered-backprojection reconstruction for this situation.

View Article and Find Full Text PDF