Publications by authors named "P K Palanisamy"

Objective: To investigate the effects of ultrasound treatment on the healing of hip bone fractures using frequencies of 0.5 MHz and 1.5 MHz with constant intensity (30 mW/cm) at the fractured site.

View Article and Find Full Text PDF

Significant progress has been made in cancer therapy with protein-based nanocarriers targeted directly to surface receptors for drug delivery. The nanocarriers are a potentially effective solution for the potential drawbacks of traditional chemotherapy, such as lack of specificity, side effects, and development resistance. Peptides as nanocarriers have been designed based on their biocompatible, biodegradable, and versatile functions to deliver therapeutic agents into cancer cells, reduce systemic toxicity, and maximize therapy efficacy through utilizing targeted ligands such as antibodies, amino acids, vitamins, and other small molecules onto protein-based nanocarriers and thus ensuring that drugs selectively accumulate in the cancer cells instead of healthy organs/drug release at a target site without effects on normal cells, which inherently caused less systemic toxicity/off-target effect.

View Article and Find Full Text PDF

Objectives: This study intended to investigate the potential of glucosamine sulfate (GS) as an inhibitor of genes involved in osteoarthritis (OA) development. Despite GS is often used for OA treatment due to its cartilage preservation and minimum side effects, the molecular mechanism behind its interactions remains unknown.

Methods: Molecular docking was conducted to analyze the interactions between glucosamine sulfate and genes associated with OA such as matrix metalloproteinase-3 (MMP-3), MMP-9, and interleukin-4 (IL-4).

View Article and Find Full Text PDF

Two modular systems were synthesized composed of triphenylamine (ZnTPAP) and pyrene (ZnPyP) covalently linked at meso position of the Zn(II) porphyrins. Both compounds behaved as energy transfer antenna and orthogonal units to enhance the electron donating ability of Zn(II) porphyrins. Detailed photophysical and aggregation studies reveal that an appreciable electronic interaction exists between peripheral units to the porphyrin π-system so that they behave like strong donor materials.

View Article and Find Full Text PDF