Publications by authors named "P K Lauf"

The scanning gas diffusion electrode (S-GDE) half-cell is introduced as a new tool to improve the evaluation of electrodes used in electrochemical energy conversion technologies. It allows both fast screening and fundamental studies of real catalyst layers by applying coupled mass spectrometry techniques such as inductively coupled plasma mass spectrometry and online gas mass spectrometry. Hence, the proposed setup overcomes the limitations of aqueous model systems and full cell-level studies, bridging the gap between the two approaches.

View Article and Find Full Text PDF

Background/aims: Silver nanoparticles (AgNPs) are the most frequently used nanomaterials in industrial and biomedical applications. Their functionalization significantly impacts their properties and potential applications. Despite the need to produce, investigate and apply them, not much is known about the toxicity of silver nanoparticles to and their interaction with blood components, such as erythrocytes.

View Article and Find Full Text PDF

During aging, and development of atherosclerosis and cardiovascular disease (CVD), aortic vascular smooth muscle cells (VSMCs) transition from healthy contractile to diseased synthetic phenotypes. K-Cl cotransport (KCC) maintains cell volume and ion homeostasis in growth and differentiation, and hence is important for VSMC proliferation and migration. Therefore, KCC activity may play a role in the contractile-to-synthetic VSMC phenotypic transition.

View Article and Find Full Text PDF

The defense of cell volume against excessive shrinkage or swelling is a requirement for cell function and organismal survival. Cell swelling triggers a coordinated homeostatic response termed regulatory volume decrease (RVD), resulting in K(+) and Cl(-) efflux via activation of K(+) channels, volume-regulated anion channels (VRACs), and the K(+)-Cl(-) cotransporters, including KCC3. Here, we show genetic alanine (Ala) substitution at threonines (Thr) 991 and 1048 in the KCC3a isoform carboxyl-terminus, preventing inhibitory phosphorylation at these sites, not only significantly up-regulates KCC3a activity up to 25-fold in normally inhibitory isotonic conditions, but is also accompanied by reversal of activity of the related bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter isoform 1 (NKCC1).

View Article and Find Full Text PDF

K(+)-Cl(-) cotransporters (KCCs) were originally characterized as regulators of red blood cell (RBC) volume. Since then, four distinct KCCs have been cloned, and their importance for volume regulation has been demonstrated in other cell types. Genetic models of certain KCCs, such as KCC3, and their inhibitory WNK-STE20/SPS1-related proline/alanine-rich kinase (SPAK) serine-threonine kinases, have demonstrated the evolutionary necessity of these molecules for nervous system cell volume regulation, structure, and function, and their involvement in neurological disease.

View Article and Find Full Text PDF