Publications by authors named "P K Bajpe"

During the heat shock response (HSR), heat shock factor (HSF1 in mammals) binds to target gene promoters, resulting in increased expression of heat shock proteins that help maintain protein homeostasis and ensure cell survival. Besides HSF1, only a relatively few transcription factors with a specific role in ensuring correctly regulated gene expression during the HSR have been described. Here, we use proteomic and genomic (CRISPR) screening to identify a role for RPRD1B in the response to heat shock.

View Article and Find Full Text PDF

The cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway senses cytosolic DNA and induces interferon-stimulated genes (ISGs) to activate the innate immune system. Here, we report the unexpected discovery that cGAS also senses dysfunctional protein production. Purified ribosomes interact directly with cGAS and stimulate its DNA-dependent activity in vitro.

View Article and Find Full Text PDF

Unlabelled: Neuroblastoma cell lines can differentiate upon treatment with retinoic acid (RA), a finding that provided the basis for the clinical use of RA to treat neuroblastoma. However, resistance to RA is often observed, which limits its clinical utility. Using a gain-of-function genetic screen, we identified an unexpected link between RA signaling and mastermind-like 3 (MAML3), a known transcriptional coactivator for NOTCH.

View Article and Find Full Text PDF

Treatment of BRAF(V600E) mutant melanoma by small molecule drugs that target the BRAF or MEK kinases can be effective, but resistance develops invariably. In contrast, colon cancers that harbour the same BRAF(V600E) mutation are intrinsically resistant to BRAF inhibitors, due to feedback activation of the epidermal growth factor receptor (EGFR). Here we show that 6 out of 16 melanoma tumours analysed acquired EGFR expression after the development of resistance to BRAF or MEK inhibitors.

View Article and Find Full Text PDF

Resistance to targeted therapies is a major problem in cancer treatment. The epidermal growth factor receptor (EGFR) antibody drugs are effective in a subset of colorectal cancers, but the molecular mechanisms of resistance are understood poorly. Genes involved in epigenetic regulation are frequently deregulated in cancer, raising the possibility that such genes also contribute to drug resistance.

View Article and Find Full Text PDF