Background: Monte Carlo (MC) simulations are used in nuclear medicine imaging as they provide unparalleled insight into processes that are not directly experimentally measurable, such as scatter and attenuation in an acquisition. Whilst MC is often used to provide a 'ground-truth', this is only the case if the simulation is fully validated against experimental data. This work presents a quantitative validation for a MC simulation of a single-photon emission computed tomography (SPECT) system.
View Article and Find Full Text PDFThis article presents the protocol on Quality Controls in PET/CT and PET/MRI published online in May 2022 by the European Federation of Organisations for Medical Physics (EFOMP), which was developed by the Working group for PET/CT and PET/MRI Quality Control (QC) protocol. The main objective of this protocol was to comprehensively provide simple and practical procedures that may be integrated into clinical practice to identify changes in the PET/CT/MRI system's performance and avoid short- and long-term quality deterioration. The protocol describes the quality control procedures on radionuclide calibrators, weighing scales, PET, CT and MRI systems using selected and measurable parameters that are directly linked to clinical images quality.
View Article and Find Full Text PDFThe Ionising Radiation (Medical Exposure) Regulations require employers to appoint suitable medical physics experts (MPE) for nuclear medicine services, and they also define the areas where MPEs are required to provide advice and specify matters that they must contribute towards. Applications for employer licences under IR(ME)R require employers to specify the level of MPE support available and if this is provided by onsite MPEs or remotely. Assessment of these applications by the Administration of Radioactive Substances Advisory Committee (ARSAC) has highlighted variability in the levels of MPE support being provided for similar services across the UK.
View Article and Find Full Text PDFBackground: Radioguided surgery (RGS) for gastroenteropancreatic neuroendocrine tumours (GEP-NETs) has been suggested as a way to improve intraoperative lesion detection. This systematic literature review of reports of the use of RGS for GEP-NETs was performed to determine if there is a benefit.
Methods: A literature search was conducted using Google Scholar and PubMed, and snowballing from any relevant literature.
Background: Ga-DOTA0-Tyr3-octreotide (Ga-DOTATOC) positron emission tomography-CT (PET-CT) has superior diagnostic performance compared to the licensed tracer OctreoScan single photon emission CT-CT in patients with gastroenteropancreatic neuroendocrine tumours (GEP-NETs). A new preparation of Ga-DOTATOC using a new 'ready-to-use' Ga-DOTATOC formulation for injection has been developed (Ga-DOTATOC (SomaKIT TOC)).
Objectives: This study aimed to assess the safety and tolerability of Ga-DOTATOC (SomaKIT TOC) and evaluate the feasibility and robustness of implementing it in a NET clinical imaging service.