Publications by authors named "P Joseph Aruscavage"

Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together.

View Article and Find Full Text PDF

Invertebrates use the endoribonuclease Dicer to cleave viral dsRNA during antiviral defense, while vertebrates use RIG-I-like Receptors (RLRs), which bind viral dsRNA to trigger an interferon response. While some invertebrate Dicers act alone during antiviral defense, Dicer acts in a complex with a dsRNA binding protein called RDE-4, and an RLR ortholog called DRH-1. We used biochemical and structural techniques to provide mechanistic insight into how these proteins function together.

View Article and Find Full Text PDF

Antiviral defense in ecdysozoan invertebrates requires Dicer with a helicase domain capable of ATP hydrolysis. But despite well-conserved ATPase motifs, human Dicer is incapable of ATP hydrolysis, consistent with a muted role in antiviral defense. To investigate this enigma, we used ancestral protein reconstruction to resurrect Dicer's helicase in animals and trace the evolutionary trajectory of ATP hydrolysis.

View Article and Find Full Text PDF

In vitro, Dicer-2 (Dcr-2) uses its helicase domain to initiate processing of dsRNA with blunt (BLT) termini, and its Platform•PAZ domain to initiate processing of dsRNA with 3' overhangs (ovrs). To understand the relationship of these in vitro observations to roles of Dcr-2 in vivo, we compared in vitro effects of two helicase mutations to their impact on production of endogenous and viral siRNAs in flies. Consistent with the importance of the helicase domain in processing BLT dsRNA, both point mutations eliminated processing of BLT, but not 3'ovr, dsRNA in vitro.

View Article and Find Full Text PDF

In previous studies we observed that the helicase domain of Drosophila Dicer-2 (dmDcr-2) governs substrate recognition and cleavage efficiency, and that dsRNA termini are key to this discrimination. We now provide a mechanistic basis for these observations. We show that discrimination of termini occurs during initial binding.

View Article and Find Full Text PDF