High Nature Value (HNV) farming systems occur in areas where the major land use is agriculture and are characterized by their significance in promoting biodiversity and ecosystem services due to their extensive land use. Despite their importance for ecological and socio-economic resilience of rural regions, these systems are often overlooked in Life Cycle Assessment (LCA) studies due to challenges in data compilation, especially from small local farms and because of the diversity of production. To address this gap, we established an international collaborative network across Europe, involving professionals directly engaged with farmers, farmer associations, and researchers to collect data on HNV farms employing a developed questionnaire examining inputs and outputs, farm structures, and herd characteristics.
View Article and Find Full Text PDFEnviron Sci Technol
June 2023
Life cycle assessment (LCA) aims at providing standardized evaluations of processes involving resource use, human health, and environmental consequences. Currently, spatial dependencies are most often neglected, though they are essential for impact categories like biodiversity. The "Swiss Agricultural Life Cycle Assessment for Biodiversity (SALCA-BD)" evaluates the impact of agricultural field management on 11 indicator species groups.
View Article and Find Full Text PDFBackground: The intensification of the agricultural practices in Europe over the last decades has drastically transformed the agroecosystems. The simplification of the landscape, the loss of semi-natural habitats and the application of chemicals on crops are known to have led to biodiversity decline in agricultural landscapes, raising substantial concerns about the loss of essential ecosystem services, such as pollination or pest control. Depending on the location, the scale and the regional context, different indicator species groups (ISGs) are often surveyed to assess the state and trend of biodiversity changes in agroecosystems.
View Article and Find Full Text PDFSeventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions.
View Article and Find Full Text PDF