Publications by authors named "P Jasen"

We investigated by first principle calculations the adsorption of Li(= -1, 0 or +1) on a silicene single layer. Pristine and three different defective silicene configurations with and without Li doping were studied: single vacancy (SV), double vacancy (DV) and Stone-Wales (STW). Structural studies and the adsorption energies of various sites were obtained and compared in order to understand the stability of the Li on the surface.

View Article and Find Full Text PDF

We study the electronic heat capacity in doped graphene under magnetic fields. The partition function is calculated considering only the thermal excitations in the last occupied energy levels. Due to the large energy separation between the Landau levels (LLs) and the Zeeman splitting, at low temperatures the heat capacity is dominated by the spin excitations in the last occupied LL.

View Article and Find Full Text PDF

We study the magnetic oscillations (MO) in 2D materials with a buckled honeycomb lattice, considering a perpendicular electric and magnetic field. At zero temperature the MO consist of the sum of four sawtooth oscillations, with two unique frequencies and phases. The values of these frequencies depend on the Fermi energy and electric field, which in turn determine the condition for a beating phenomenon in the MO.

View Article and Find Full Text PDF

We analyze the magnetic oscillations (MO) due to the de Haas-van Alphen effect, in pristine graphene under a perpendicular magnetic field, taking into account the Zeeman effect. We consider a constant Fermi energy, such that the valence band is always full and only the conduction band is available. At zero temperature the MO consist of two sawtooth peaks, one for each spin.

View Article and Find Full Text PDF

In this study, we present the structural, electronic, and mechanical properties of edge-doped zigzag graphene nanoribbons (ZGNRs) doped with fluorine, oxygen, and chlorine atoms. To the best of our knowledge, to date, no experimental results concerning the mechanical properties of graphene-derived nanoribbons have been reported in the literature. Simulations indicate that Cl- and F-doped ZGNRs present an equivalent 2-dimensional Young's modulus E, which seems to be higher than those of graphene and H-doped ZGNRs.

View Article and Find Full Text PDF