The spontaneously hypertensive rat (SHR), a genetic model of high blood pressure, has also been studied as a potential model of overactive bladder. In vivo studies have confirmed the presence of surrogate markers of overactive bladder, including detrusor overactivity, increased urinary frequency, decreased bladder capacity and voided volume (VV), and afferent hypersensitivity to bladder irritation. However, these observations were during awake cystometry using implanted bladder catheters tethered to an infusion pump and artificially filled.
View Article and Find Full Text PDFElectrical stimulation therapies to promote bladder filling and prevent incontinence deliver continuous inhibitory stimulation, even during bladder emptying. However, continuous inhibitory stimulation that increases bladder capacity (BC) can reduce the efficiency of subsequent voiding (VE). Here we demonstrate that state-dependent stimulation, with different electrical stimulation parameters delivered during filling and emptying can increase both BC and VE relative to continuous stimulation in rats and cats of both sexes.
View Article and Find Full Text PDFProstaglandin E (PGE) instilled into the bladder generates symptoms of urinary urgency in healthy women and reduces bladder capacity and urethral pressure in both humans and female rats. Systemic capsaicin desensitization, which causes degeneration of C-fibers, prevented PGE-mediated reductions in bladder capacity, suggesting that PGE acts as an irritant (Maggi CA, Giuliani S, Conte B, Furio M, Santicioli P, Meli P, Gragnani L, Meli A. 145: 105-112, 1988).
View Article and Find Full Text PDFElectrical stimulation of myelinated afferent fibers of the superior laryngeal nerve (SLN) facilitates calcitonin secretion from the thyroid gland in anesthetized rats. In this study, we aimed to quantify the electrical SLN stimulation-induced systemic calcitonin release in conscious rats and to then clarify effects of chronic SLN stimulation on bone mineral density (BMD) in a rat ovariectomized disease model of osteoporosis. Cuff electrodes were implanted bilaterally on SLNs and after two weeks recovery were stimulated (0.
View Article and Find Full Text PDFSelective electrical stimulation of the pudendal nerve exhibits promise as a potential therapy for treating overactive bladder (OAB) across species (rats, cats, and humans). More recently, pelvic nerve (PelN) stimulation was demonstrated to improve cystometric bladder capacity in a PGE rat model of OAB. However, PelN stimulation in humans or in an animal model that is more closely related to humans has not been explored.
View Article and Find Full Text PDF