UVB irradiation of epidermal keratinocytes results in the activation of the p38 mitogen-activated protein kinase (MAPK) pathway and subsequently activator protein-1 (AP-1) transcription factor activation and cyclooxygenase-2 (COX-2) expression. AP-1 and COX-2 have been shown to play functional roles in UVB-induced mouse skin carcinogenesis. In this study, the experimental approach was to express a dominant negative p38α MAPK (p38DN) in the epidermis of SKH-1 hairless mice and assess UVB-induced AP-1 activation, COX-2 expression, and the skin carcinogenesis response in these mice compared to wild-type littermates.
View Article and Find Full Text PDFObjective: Preliminary in vitro studies have indicated that sodium butyrate inhibits the proliferation of cultured glioma cells and induces cellular differentiation, making it potentially useful as a therapeutic agent for patients with glioblastoma multiforme. The purpose of this study was to expand on the preliminary research by investigating the effects of sodium butyrate on multiple cell lines, explanted cells from glioblastoma tumor specimens, and in vivo in the rat C6 glioma brain tumor model.
Methods: Four malignant glioma cell lines (A-172, T98G, U118MG, and C6) and two primary cell cultures derived from human glioblastoma tumor specimens were treated with 2 mmol/L sodium butyrate for up to 72 hours.
Mol Biol Cell
February 1998
Recent studies have revealed the expression of multiple putative cytoplasmic dynein heavy chain (DHC) genes in several organisms, with each gene encoding a separate protein isoform. This finding is consistent with the hypothesis that different isoforms do different things, as is the case for the axonemal dyneins. Furthermore, the large number of tasks ascribed to cytoplasmic dynein suggests that there may be additional isoforms not yet identified.
View Article and Find Full Text PDFOrganisms that have cilia or flagella express over a dozen dynein heavy chain genes. Of these heavy chain genes, most appear to encode axonemal dyneins, one encodes conventional cytoplasmic dynein (MAP1C or DHC1a), and one, here referred to as DHC1b, encodes an unclassified heavy chain. Previous analysis of sea urchin DHC1b (Gibbons et al.
View Article and Find Full Text PDFThis study was designed to determine whether or not overexpression of the c-erbB2 protein plays a role in the etiology of human gliomas. The c-erbB2 gene codes for a 185 kDa cell membrane glycoprotein (gp185c-erbB2), which is similar to the receptor for epidermal growth factor. In initial studies, four human glioma cell lines (A-172, U118MG, U138MG and SW608) were used to develop techniques for detecting and quantifying gp185c-erbB2, using immunofluorescence microscopy, immunoblot analysis and flow cytometry.
View Article and Find Full Text PDF