Publications by authors named "P Jandera"

Polar columns used in the HILIC (Hydrophilic Interaction Liquid Chromatography) systems take up water from the mixed aqueous-organic mobile phases in excess of the water concentration in the bulk mobile phase. The adsorbed water forms a diffuse layer, which becomes a part of the HILIC stationary phase and plays dominant role in the retention of polar compounds. It is difficult to fix the exact boundary between the diffuse stationary and the bulk mobile phase, hence determining the column hold-up volume is subject to errors.

View Article and Find Full Text PDF

Adopting a stationary phase convention circumvents problematic definition of the boundary between the stationary and the mobile phase in the liquid chromatography, resulting in thermodynamically consistent and reproducible chromatographic data. Three stationary phase definition conventions provide different retention data, but equal selectivity: (i) the complete solid phase moiety; (ii) the solid porous part carrying the active interaction centers; (iii) the volume of the inner column pores. The selective uptake of water from the bulk aqueous-organic mobile phase significantly affects the volume and the properties of polar stationary phases.

View Article and Find Full Text PDF

Two-dimensional liquid chromatography largely increases the number of separated compounds in a single run, theoretically up to the product of the peaks separated in each dimension on the columns with different selectivities. On-line coupling of a reversed-phase column with an aqueous normal-phase (hydrophilic interaction liquid chromatography) column yields orthogonal systems with high peak capacities. Fast on-line two-dimensional liquid chromatography needs a capillary or micro-bore column providing low-volume effluent fractions transferred to a short efficient second-dimension column for separation at a high mobile phase flow rate.

View Article and Find Full Text PDF

Correct adjustment of the mobile phase is equally important as the selection of the appropriate column for the separation of polar compounds in LC. Both solvophobic and selective polar interactions control the retention in the Reversed Phase and Hydrophilic Interaction modes. The retention models describing the effects of the volume fraction of the strong eluent component in binary mobile phases on the sample retention factors apply in a limited mobile phase composition range.

View Article and Find Full Text PDF

Hydrophilic interaction liquid chromatography on polar columns in aqueous-organic mobile phases has become increasingly popular for the separation of many biologically important compounds in chemical, environmental, food, toxicological, and other samples. In spite of many new applications appearing in literature, the retention mechanism is still controversial. This review addresses recent progress in understanding of the retention models in hydrophilic interaction liquid chromatography.

View Article and Find Full Text PDF