Owing to its two-dimensional electronic structure, graphene exhibits many unique properties. One of them is a wave vector and temperature dependent plasmon in the infrared range. Theory predicts that due to these plasmons, graphene can be used as a universal material to enhance nanoscale radiative heat exchange for any dielectric substrate.
View Article and Find Full Text PDFThe control of heat flow is a formidable challenge due to lack of good thermal insulators. Promising new opportunities for heat flow control were recently theoretically discovered for radiative heat flow in near field, where large heat flow contrasts may be achieved by tuning electronic excitations on surfaces. Here we show experimentally that the phase transition of VO2 entails a change of surface polariton states that significantly affects radiative heat transfer in near field.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2009
In this work we concentrate on an experimental validation of the Lifshitz theory for the van der Waals and the Casimir forces in gold-alcohol-glass systems. From this theory weak dispersive forces are predicted when the dielectric properties of the intervening medium become comparable to one of the interacting surfaces. Using inverse colloid probe atomic force microscopy dispersive forces were measured occasionally and under controlled conditions by addition of salt to screen the electrostatic double layer force if present.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2008
Capillary forces have been measured by atomic force microscopy in the plate-sphere setup between gold, borosilicate glass, GeSbTe, titanium, and UV-irradiated amorphous titanium-dioxide surfaces. The force measurements were performed as a function contact time and surface roughness in the range 0.2-15 nm rms and relative humidity ranging between 2% and 40%.
View Article and Find Full Text PDFWe have investigated the morphology and surface roughness of several commercially available microspheres to determine their suitability for force measurements using the atomic force microscope. The roughness varies considerably, depending on sphere size and material, ranging from nearly ideally flat up to micrometer-sized features. Because surface roughness significantly influences the magnitude and accuracy of measurement of surface forces, the results presented here should be helpful for colloid physicists and in particular for those performing force measurements.
View Article and Find Full Text PDF