Poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors represent a significant advancement in the treatment of epithelial ovarian cancer, triple-negative breast cancer, pancreatic cancer, and castrate-resistant prostate cancer, and they are poised to improve treatment in an increasing number of other cancer types. PARP inhibitor efficacy as monotherapy has been primarily observed in tumors with deleterious genetic variants in genes involved in the homologous recombination repair pathway. Tumors without these variants have also been shown to respond; notably, those with hypermethylation at all alleles of the BRCA1 or RAD51C promoter can respond to PARP inhibitors.
View Article and Find Full Text PDFBackground: True lateral imaging (TLI), obtained by superimposing bilateral lumbar spine structures and aligning superior endplate cortical bone, requires deliberate rotational adjustments of the laterally positioned fluoroscope in both the axial and longitudinal planes. True lateral segmental imaging is necessary to depict true and accurate radiofrequency (RF) cannula positioning relative to bony anatomy during lumbar medial branch radiofrequency neurotomy (LMBRFN).
Objective: To determine the interobserver reliability of TLI during LMBRFN.
Phosphorylated biomarkers are crucial for our understanding of drug mechanism of action and dose selection during clinical trials, particularly for drugs that target protein kinases, such as DNA-damage-response (DDR) inhibitors. However, tissue fixation conditions needed to preserve DDR-specific phospho-biomarkers have not been previously investigated. Using xenograft tissues and tightly controlled formalin fixation conditions, we assessed how preanalytical factors affect phosphorylated DDR biomarkers pRAD50(Ser635), ɣH2AX(Ser139), pKAP1(Ser824), and non-phosphorylated biomarkers cMYC and ATM.
View Article and Find Full Text PDFIdentification of somatic variants in cancer by high-throughput sequencing has become common clinical practice, largely because many of these variants may be predictive biomarkers for targeted therapies. However, there can be high sample quality control (QC) failure rates for some tests that prevent the return of results. Stem-loop inhibition mediated amplification (SLIMamp) is a patented technology that has been incorporated into commercially available cancer next-generation sequencing testing kits.
View Article and Find Full Text PDF