Cubilin (CUBN), the intrinsic factor-vitamin B12 receptor is a large endocytic protein involved in various physiological functions: vitamin B12 uptake in the gut; reabsorption of albumin and maturation of vitamin D in the kidney; nutrient delivery during embryonic development. Cubilin is an atypical receptor, peripherally associated to the plasma membrane. The transmembrane proteins amnionless (AMN) and Lrp2/Megalin are the currently known molecular partners contributing to plasma membrane transport and internalization of Cubilin.
View Article and Find Full Text PDFBackground: Imerslund-Gräsbeck Syndrome (IGS) is a rare genetic disorder characterised by juvenile megaloblastic anaemia. IGS is caused by mutations in either of the genes encoding the intestinal intrinsic factor-vitamin B12 receptor complex, cubam. The cubam receptor proteins cubilin and amnionless are both expressed in the small intestine as well as the proximal tubules of the kidney and exhibit an interdependent relationship for post-translational processing and trafficking.
View Article and Find Full Text PDFCubilin (Cubn) is a multiligand endocytic receptor critical for the intestinal absorption of vitamin B12 and renal protein reabsorption. During mouse development, Cubn is expressed in both embryonic and extra-embryonic tissues, and Cubn gene inactivation results in early embryo lethality most likely due to the impairment of the function of extra-embryonic Cubn. Here, we focus on the developmental role of Cubn expressed in the embryonic head.
View Article and Find Full Text PDFBackground: The reabsorption of filtered plasma proteins, hormones and vitamins by the renal proximal tubules is vital for body homeostasis. Studies of megalin-deficient mice suggest that the large multi-ligand endocytic receptor megalin plays an essential role in this process. In humans, dysfunctional megalin causes the extremely rare Donnai-Barrow/Facio-Oculo-Acustico-Renal (DB/FOAR) syndrome characterized by a characteristic and multifaceted phenotype including low-molecular-weight proteinuria.
View Article and Find Full Text PDFBackground: The bulk of proteins filtered in the glomeruli are reabsorbed in the proximal tubule by endocytosis mediated by two multiligand receptors operating in concert, megalin and cubilin. Podocytes can also internalize protein and megalin; this was initially reported in rat proximal tubular and glomerular epithelial cells and has recently also been demonstrated in human podocytes. Cubilin, crucial for albumin reabsorption in the proximal tubule, has not been identified in glomerular epithelial cells.
View Article and Find Full Text PDF