Magnetic nanomaterials record information as fast as picoseconds in computer memories but retain it for millions of years in ancient rocks. This exceedingly broad range of times is covered by hopping over a potential energy barrier through temperature, ultrafast optical excitation, mechanical stress, or microwaves. As switching depends on nanoparticle size, shape, orientation, and material properties, only single-nanoparticle studies can eliminate the ensemble heterogeneity.
View Article and Find Full Text PDFRecent advances in single-particle photothermal circular dichroism (PT CD) and photothermal magnetic circular dichroism (PT MCD) microscopy have shown strong promise for diverse applications in chirality and magnetism. Photothermal circular dichroism microscopy measures direct differential absorption of left- and right-circularly polarized light by a chiral nanoobject and thus can measure a pure circular dichroism signal, which is free from the contribution of circular birefringence and linear dichroism. Photothermal magnetic circular dichroism, which is based on the polar magneto-optical Kerr effect, can probe the magnetic properties of a single nanoparticle (of sizes down to 20 nm) optically.
View Article and Find Full Text PDFPurpose: Lung transplant recipients are at increased risk of severe disease following infection with severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) due to high-dose immunosuppressive drugs and the lung is the main organ affected by Coronavirus disease 2019 (COVID-19). Several studies have confirmed increased SARS-CoV-2-related mortality and morbidity in patients living with lung allografts; however, detailed immunological studies of patients with SARS-CoV-2 infection in the early phase following transplantation remain scarce.
Methods: We investigated patients who were infected with SARS-CoV-2 in the early phase (18-103 days) after receiving double-lung allografts (n = 4, LuTx) in comparison to immunocompetent patients who had not received solid organ transplants (n = 88, noTx).