Publications by authors named "P J Schreur"

The imidazoquinoline (R)-5,6-Dihydro-N,N-dimethyl-4H-imidazo[4,5,1-ij]quinolin-5-amine [(R)-3] is a potent dopamine agonist when tested in animals but surprisingly shows very low affinity in in vitro binding assays. When incubated with mouse or monkey liver S9 microsomes, (R)-3 is metabolized by N-demethylation and oxidation to (R)-5,6-dihydro-5-(methylamino)-4H-imidazo[4,5,1-ij]quinolin-2(1H) -one [(R)-6], intermediate metabolites, where N-demethylation to the imidazoquinoline (R)-4 and where oxidation to the imidazoquinolinone (R)-5 has taken place, are also observed in these incubates. A cross-species study on the metabolism of (R)-3 in vitro has shown large variations in the extent of metabolism from species to species.

View Article and Find Full Text PDF

U-91356A [(R)-5,6-dihydro-5-(propylamino)4H-imidazo[4,5,1-ij]quinolin -2-(1H)-one, monohydrochloride], bound with highest affinity to the dopamine D2 receptor subtype, although it also bound with somewhat lower affinities to the dopamine D3 and D4, as well as the 5-HT1A receptor subtypes. In addition to depressing dopamine synthesis and turnover, injection of U-91356A increased striatal acetylcholine concentrations. U-91356A also depressed firing rates of dopamine neurons.

View Article and Find Full Text PDF

Dopamine D2-like receptors play an important role in the pharmacotherapy of psychotic disorders. Molecular and cellular techniques have identified distinct gene products (D2-long, D2-short, D3 and D4) displaying the D2 receptor pharmacology. However, the contribution of each subtype in antipsychotic effects of or their physiological role remain unclear.

View Article and Find Full Text PDF

A series of tetracyclic imidazoquinoxaline analogs was developed which constrain the carbonyl group of the partial agonist 3-(5-cyclopropyl-1,2,4-oxadiazol-3-yl)-5-[(dimethylamino)carbonyl] - 4,5-dihydroimidazo[1,5-alpha]quinoxaline (2, U-91571) away from the benzene ring. These analogs orient the carbonyl group in the opposite direction of the previously reported full agonist 1-(5- cyclopropyl-1,2,4-oxadiazol-3-yl)-12,12a-dihydroimidazo[1,5- alpha]pyrrolo [2,1-c]quinoxalin-10(11H)-one (3, U-89267). A number of approaches were utilized to form the "bottom" ring of this tetracyclic ring system including intramolecular cyclizations promoted by Lewis acids or base, as well as metal-carbenoid conditions.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on U-92016A, a compound identified as a 5-HT1A receptor agonist, demonstrating high binding affinity and selectivity for this receptor.
  • U-92016A effectively lowers rectal temperature in mice, surpassing the effects of other known 5-HT1A agonists and has a significant impact on various physiological functions, including blood pressure and sympathetic nerve activity.
  • The compound exhibits a 45% bioavailability when taken orally, indicating promise for therapeutic use due to its potency, stability, and duration of action.
View Article and Find Full Text PDF