Here we describe a new method to identify calcium-binding sites in proteins using high-resolution liquid chromatography-mass spectrometry in concert with calcium-directed collision-induced dissociations. Our method does not require any modifications to the liquid chromatography-mass spectrometry apparatus, uses standard digestion protocols, and can be applied to existing high-resolution MS data files. In contrast to NMR, our method is applicable to very small amounts of complex protein mixtures (femtomole level).
View Article and Find Full Text PDFTernary complexes of the type AH•••M(2+)•••L(-) (AH = diol, including diethylene and triethylene glycol, M = Ca, Mn, Fe, Co, Ni, Cu and Zn and auxiliary anion ligand L(-) = CH(3)COO(-), HCOO(-) and Cl(-)) have been generated in the gas phase by MALDI and ESI, and their dissociation characteristics have been obtained. Use of the auxiliary ligands enables the complexation of AH with the divalent metal ion without AH becoming deprotonated, although A(-)•••M(2+) is often also generated in the ion source or after MS/MS. For M = Ca, dissociation occurs to AH + M(2+)•••L(-) and/or to A(-)•••M(2+) + LH, the latter being produced from the H-shifted isomer A(-) •••M(2+)•••LH.
View Article and Find Full Text PDFCopper chloride anion clusters with both copper oxidation states can be made by laser desorption of CuCl(2) crystals. We have used this method to study the dissociation characteristics of such cluster ions. The stability and the structure of the observed complexes were probed by ab initio calculations.
View Article and Find Full Text PDFIn a previous study [van Kampen et al. Analytical Chemistry 2006; 78: 5403], we found that meso-tetrakis (pentafluorophenyl)porphyrin (F20TPP), in combination with lithium salts, provides an efficient matrix to cationize small molecules by Li+ attachment and that this combination can be successfully applied to the quantitative analysis of drugs, such as antiretroviral compounds using matrix-assisted laser desorption ionization in conjunction with a time-of-flight analyzer (MALDI-TOF). In the present study, we further explore the mechanism of metal ion attachment to F20TPP and analytes by MALDI-FTMS(/MS).
View Article and Find Full Text PDF