Excimer-laser microetching of a variety of materials is applied to the fabrication of surface-relief optical microstructures of arbitrary morphology, with particular emphasis on computer-generated holographic structures. High-definition, high-radiation-intensity selective laser ablative etching in conjunction with step-and-repeat (period) replication or raster (pixel) scanning is used. To support such developments, the characteristic etching properties of a wide range of solid materials, from metals to semiconductors and polymers, are studied.
View Article and Find Full Text PDFAn experiment using the phenomenon of percolation has been conducted to demonstrate the implementation of neural functionality (summing and sigmoid transfer). A simple analog approximation to digital percolation is implemented. The device consists of a piece of amorphous silicon with stochastic bit-stream optical inputs, in which a current percolating from one end to the other defines the neuron output, also in the form of a stochastic bit stream.
View Article and Find Full Text PDF