Genetic studies of the metabolome can uncover enzymatic and transport processes shaping human metabolism. Using rare variant aggregation testing based on whole-exome sequencing data to detect genes associated with levels of 1,294 plasma and 1,396 urine metabolites, we discovered 235 gene-metabolite associations, many previously unreported. Complementary approaches (genetic, computational (in silico gene knockouts in whole-body models of human metabolism) and one experimental proof of principle) provided orthogonal evidence that studies of rare, damaging variants in the heterozygous state permit inferences concordant with those from inborn errors of metabolism.
View Article and Find Full Text PDFAdvances in omics technologies have allowed spatially resolved molecular profiling of single cells, providing a window not only into the diversity and distribution of cell types within a tissue, but also into the effects of interactions between cells in shaping the transcriptional landscape. Cells send chemical and mechanical signals which are received by other cells, where they can subsequently initiate context-specific gene regulatory responses. These interactions and their responses shape the individual molecular phenotype of a cell in a given microenvironment.
View Article and Find Full Text PDFAconitate decarboxylase-1 (ACOD1) is expressed by activated macrophages and generates itaconate that exerts anti-microbial and immunoregulatory effects. ACOD1-itaconate is essential for macrophage-mediated control of the intracellular pathogen , which causes Q fever. Two isomers of itaconate, mesaconate and citraconate, have overlapping yet distinct activity on macrophage metabolism and inflammatory gene expression.
View Article and Find Full Text PDFIt was pointed out to us that we had not followed exactly the IROA TruQuant IQQ Workflow Kit protocol in the experimental part of our work [...
View Article and Find Full Text PDF