Publications by authors named "P J McKeown-Longo"

Changes in the organization and structure of the fibronectin matrix are believed to contribute to dysregulated wound healing and subsequent tissue inflammation and tissue fibrosis. These changes include an increase in the EDA isoform of fibronectin as well as the mechanical unfolding of fibronectin type III domains. In previous studies using embryonic foreskin fibroblasts, we have shown that fibronectin's EDA domain (FnEDA) and the partially unfolded first Type III domain (FnIII-1c) function as Damage Associated Molecular Pattern (DAMP) molecules to stimulate the induction of inflammatory cytokines by serving as agonists for Toll-Like Receptor-4 (TLR4).

View Article and Find Full Text PDF

The microenvironment of tumors is characterized by structural changes in the fibronectin matrix, which include increased deposition of the EDA isoform of fibronectin and the unfolding of the fibronectin Type III domains. The impact of these structural changes on tumor progression is not well understood. The fibronectin EDA (FnEDA) domain and the partially unfolded first Type III domain of fibronectin (FnIII-1c) have been identified as endogenous damage-associated molecular pattern molecules (DAMPs), which induce innate immune responses by serving as agonists for Toll-Like Receptors (TLRs).

View Article and Find Full Text PDF

Inflammation is a critical aspect of injury repair. Nonresolving inflammation, however, is perpetuated by the local generation of extracellular matrix-derived damage-associated molecular pattern molecules (DAMPs), such as the extra domain A (EDA) isoform of fibronectin and hyaluronic acid (HA) that promote the eventual acquisition of a fibrotic response. DAMPs contribute to the inflammatory environment by engaging Toll-like, integrin, and CD44 receptors while stimulating transforming growth factor (TGF)-β signaling to activate a fibroinflammatory genomic program leading to the development of chronic disease.

View Article and Find Full Text PDF

The microenvironment of solid tumors plays an essential role in tumor progression. In lung cancer, the stromal cells produce a fibronectin rich extracellular matrix which is known to contribute to both tumor metastasis and drug resistance. Due to its conformational lability, fibronectin is considerably remodeled by the contractile forces of the fibrotic microenvironment within the tumor stroma.

View Article and Find Full Text PDF

Chronic inflammation and subsequent tissue fibrosis are associated with a biochemical and mechanical remodeling of the fibronectin matrix. Due to its conformational lability, fibronectin is considerably stretched by the contractile forces of the fibrotic microenvironment, resulting in the unfolding of its Type III domains. In earlier studies, we have shown that a peptide mimetic of a partially unfolded fibronectin Type III domain, FnIII-1c, functions as a Damage Associated Molecular Pattern (DAMP) molecule to induce activation of a toll-like receptor 4 (TLR4)/NF-B pathway and the subsequent release of fibro-inflammatory cytokines from human dermal fibroblasts.

View Article and Find Full Text PDF