Recent neuroimaging studies demonstrate a heterogeneity of timescales prevalent in the brain's ongoing spontaneous activity, labeled intrinsic neural timescales (INT). At the same time, neural timescales also reflect stimulus- or task-related activity. The relationship of the INT during the brain's spontaneous activity with their involvement in task states including behavior remains unclear.
View Article and Find Full Text PDFDetoxification of heme in depends on its crystallization into hemozoin. This pathway is a major target of antimalarial drugs. The crystalline structure of hemozoin was established by X-ray powder diffraction using a synthetic analog, β-hematin.
View Article and Find Full Text PDFWorking memory (WM) describes the dynamic process of maintenance and manipulation of information over a certain time delay. Neuronally, WM recruits a distributed network of cortical regions like the visual and dorsolateral prefrontal cortex as well as the subcortical hippocampus. How the input dynamics and subsequent neural dynamics impact WM remains unclear though.
View Article and Find Full Text PDFFunctional magnetic resonance imaging (fMRI) studies have demonstrated that intrinsic neuronal timescales (INT) undergo modulation by external stimulation during consciousness. It remains unclear if INT keep the ability for significant stimulus-induced modulation during primary unconscious states, such as sleep. This fMRI analysis addresses this question via a dataset that comprises an awake resting-state plus rest and stimulus states during sleep.
View Article and Find Full Text PDFStructure-property relationships in ordered materials have long been a core principle in materials design. However, the introduction of disorder into materials provides structural flexibility and thus access to material properties that are not attainable in conventional, ordered materials. To understand disorder-property relationships, the disorder - i.
View Article and Find Full Text PDF