Background: Technology-related research on people with dementia and their carers often aims to enable people to remain living at home for longer and prevent unnecessary hospital admissions. To develop person-centered, effective, and ethical research, patient and public involvement (PPI) is necessary, although it may be perceived as more difficult with this cohort. With recent and rapid expansions in health and care-related technology, this review explored how and with what impact collaborations between researchers and stakeholders such as people with dementia and their carers have taken place.
View Article and Find Full Text PDFThe synthesis and evaluation of six C-symmetric bowl-shaped dirhodium tetracarboxylate catalysts are described. These elaborate high symmetry catalysts are readily generated by means of the self-assembly of four C-symmetric ligands around the dirhodium core. These catalysts are capable of highly site-selective, diastereoselective and enantioselective C-H functionalization reactions by means of donor/acceptor carbene-induced C-H insertions.
View Article and Find Full Text PDFBackground: Sleep disorders are common among the aging population and people with neurodegenerative diseases. Sleep disorders have a strong bidirectional relationship with neurodegenerative diseases, where they accelerate and worsen one another. Although one-to-one individual cognitive behavioral interventions (conducted in-person or on the internet) have shown promise for significant improvements in sleep efficiency among adults, many may experience difficulties accessing interventions with sleep specialists, psychiatrists, or psychologists.
View Article and Find Full Text PDFBackground: Interleukin-12 (IL-12) has emerged as one of the most potent cytokines for tumor immunotherapy due to its ability to induce interferon γ (IFNγ) and polarize Th1 responses. Clinical use of IL-12 has been limited by a short half-life and narrow therapeutic index.
Methods: We generated a monovalent, half-life-extended IL-12-Fc fusion protein, mDF6006, engineered to retain the high potency of native IL-12 while significantly expanding its therapeutic window.