Publications by authors named "P J Kiley"

The widespread family of Rrf2 transcription factors has emerged as having prominent roles in diverse bacterial functions. These proteins share an overall common structure to sense and respond to stress signals. In many known cases, signaling occurs through iron-sulfur cluster cofactors.

View Article and Find Full Text PDF

Unlabelled: Isoprenoids are a diverse family of compounds that are synthesized from two isomeric compounds, isopentenyl diphosphate and dimethylallyl diphosphate. In most bacteria, isoprenoids are produced from the essential methylerythritol phosphate (MEP) pathway. The terminal enzymes of the MEP pathway IspG and IspH are [4Fe-4S] cluster proteins, and in the substrates of IspG and IspH accumulate in cells in response to O, suggesting possible lability of their [4Fe-4S] clusters.

View Article and Find Full Text PDF

The role of IscR in regulating the transcription of genes involved in Fe-S cluster homeostasis has been well established for the model organism Escherichia coli K12. In this bacterium, IscR coordinates expression of the Isc and Suf Fe-S cluster assembly pathways to meet cellular Fe-S cluster demands shaped by a variety of environmental cues. However, since its initial discovery nearly 25 years ago, there has been growing evidence that IscR function extends well beyond Fe-S cluster homeostasis, not only in E.

View Article and Find Full Text PDF

Myxococcus xanthus possesses two Fe-S cluster biogenesis machineries, ISC (iron-sulfur cluster) and SUF (sulfur mobilization). Here, we show that in comparison to the phylogenetically distant Enterobacteria, which also have both machineries, M. xanthus evolved an independent transcriptional scheme to coordinately regulate the expression of these machineries.

View Article and Find Full Text PDF

The type III secretion system (T3SS) is an appendage used by many bacterial pathogens, such as pathogenic Yersinia, to subvert host defenses. However, because the T3SS is energetically costly and immunogenic, it must be tightly regulated in response to environmental cues to enable survival in the host. Here we show that expression of the Yersinia Ysc T3SS master regulator, LcrF, is orchestrated by the opposing activities of the repressive H-NS/YmoA histone-like protein complex and induction by the iron and oxygen-regulated IscR transcription factor.

View Article and Find Full Text PDF