Publications by authors named "P J Horner"

Spinal cord trauma leads to the destruction of the highly organized cytoarchitecture that carries information along the axis of the spinal column. Currently, there are no clinically accepted strategies that can help regenerate severed axons after spinal cord injury (SCI). Hydrogels are soft biomaterials with high water content that are widely used as scaffolds to interface with the central nervous system (CNS).

View Article and Find Full Text PDF

Substance use disorder (SUD) stigma undermines the implementation of effective harm reduction and treatment strategies in the U.S. and can impede individuals from seeking treatment.

View Article and Find Full Text PDF
Article Synopsis
  • Miniature bioelectronic implants could enhance our ability to monitor and treat diseases by providing precise measurements and stimulation across the body’s physiological systems, like the heart and brain.
  • A significant hurdle in developing these implant networks is the inefficient transfer of wireless power and data through biological tissues, which can worsen with more implants.
  • This research introduces magnetoelectric wireless transfer, allowing for multiple implants (from 1 to 6) to communicate more effectively, thus paving the way for advanced electronic medicine using scalable closed-loop networks of bioelectronic devices.
View Article and Find Full Text PDF

Intracerebral hemorrhage (ICH) poses acute fatality and long-term neurological risks due to hemin and iron accumulation from hemoglobin breakdown. Our observation that hemin induces DNA double-strand breaks (DSBs), prompting a senescence-like phenotype in neurons, necessitating deeper exploration of cellular responses. Using experimental ICH models and human ICH patient tissue, we elucidate hemin-mediated DNA damage response (DDR) inducing transient senescence and delayed expression of heme oxygenase (HO-1).

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) animal models often utilize an open surgical laminectomy, which results in animal morbidity and also leads to changes in spinal canal diameter, spinal cord perfusion, cerebrospinal fluid flow dynamics, and spinal stability which may confound SCI research. Moreover, the use of open surgical laminectomy for injury creation lacks realism when considering human SCI scenarios.

Methods: We developed a novel, image-guided, minimally invasive, large animal model of SCI which utilizes a kyphoplasty balloon inserted into the epidural space via an interlaminar approach without the need for open surgery.

View Article and Find Full Text PDF