Publications by authors named "P J Hillas"

Collagen is the main structural protein in vertebrates. It plays an essential role in providing a scaffold for cellular support and thereby affecting cell attachment, migration, proliferation, differentiation, and survival. As such, it also plays an important role in numerous approaches to the engineering of human tissues for medical applications related to tissue, bone, and skin repair and reconstruction.

View Article and Find Full Text PDF

Animal-tissue-derived collagen, containing mostly type I collagen with a minor amount of type III collagen, has been widely used in the production of hemostats for many decades, although it has been known for a long time that type III collagen is more likely to induce platelet aggregation in vitro. Because it is hard to purify type III from animal tissue, it has not been possible to correlate this finding with in vivo data. In this report, it is demonstrated that recombinant human collagen III fibrils are more capable of inducing platelet aggregation in vitro than those comprised of bovine collagen I, in agreement with previously published data on tissue-derived type III collagen.

View Article and Find Full Text PDF

The resistance of Mycobacterium tuberculosis to isoniazid is commonly linked to inactivation of a catalase-peroxidase, KatG, that converts isoniazid to its biologically active form. Loss of KatG is associated with elevated expression of the alkylhydroperoxidases AhpC and AhpD. AhpD has no sequence identity with AhpC or other proteins but has alkylhydroperoxidase activity and possibly additional physiological activities.

View Article and Find Full Text PDF

The peroxiredoxin AhpC from Mycobacterium tuberculosis has been expressed, purified, and characterized. It differs from other well characterized AhpC proteins in that it has three rather than one or two cysteine residues. Mutagenesis studies show that all three cysteine residues are important for catalytic activity.

View Article and Find Full Text PDF

The thioredoxin (Trx) and thioredoxin reductase (TR) of Mycobacterium tuberculosis have been expressed in Escherichia coli and shown to reduce peroxides and dinitrobenzenes. The reduction of H2O2 requires both Trx and TR and is more efficient under anaerobic than aerobic conditions. In contrast, cumene hydroperoxide is reduced to cumyl alcohol and acetophenone in a process that requires NADPH and TR but not Trx.

View Article and Find Full Text PDF