A phage-derived human monoclonal antibody against VEGF-C was developed as a potential anti-tumor therapeutic and exhibited fast clearance in preclinical species, with notably faster clearance in serum than in plasma. The purpose of this work was to understand the factors contributing to its fast clearance. In vitro incubations in animal and human blood, plasma, and serum were conducted with radiolabeled anti-VEGF-C to determine potential protein and cell-based interactions with the antibody as well as any matrix-dependent recovery dependent upon the matrix.
View Article and Find Full Text PDFAntibody drug conjugates (ADC), in which small molecule cytotoxic agents are non-specifically linked to antibodies, can enable targeted delivery of chemotherapeutics to tumor cells. ADCs are often produced and administered as a mixture of conjugated antibodies with different drug to antibody ratios (DAR) resulting in complex and heterogeneous disposition kinetics. We developed a mechanism-based platform model that can describe and predict the complex pharmacokinetic (PK) behavior of ADCs with protease-cleavable valine-citrulline (VC) linker linked to Monomethylmonomethyl auristatin F/E by incorporating known mechanisms of ADC disposition.
View Article and Find Full Text PDFThe quantitative relationship between neonatal Fc receptor (FcRn) binding affinity at both acidic and physiological pH and the pharmacokinetics of protein engineered FcRn IgG1 variants has not yet been reported. Our objective was to develop a quantitatively mechanism-based competitive binding model to describe the effects of FcRn binding affinity at acidic and physiological pH on the pharmacokinetics of anti-VEGF IgG1 antibodies when both endogenous and exogenous antibodies are competing for the same FcRn. Pharmacokinetic (PK) and FcRn binding data from five Fc variants of humanized anti-VEGF IgG1 monoclonal antibodies with wide range of FcRn binding affinity were used for the analysis.
View Article and Find Full Text PDFCurrently, more than 350 monoclonal antibodies (mAbs) and mAb derivatives are under development as therapeutics. The prediction of mAb pharmacokinetics (PK)/pharmacodynamics (PD) plays a key role in starting dose selection for first-in-human (FIH) studies. This article presents a brief overview of the biology and mechanisms of absorption, distribution, metabolism and excretion (ADME) for mAbs.
View Article and Find Full Text PDFPCSK9 is a promising target for the treatment of hyperlipidemia and cardiovascular disease. A Quantitative Systems Pharmacology model of the mechanisms of action of statin and anti-PCSK9 therapies was developed to predict low density lipoprotein (LDL) changes in response to anti-PCSK9 mAb for different treatment protocols and patient subpopulations. Mechanistic interactions and cross-regulation of LDL, LDL receptor, and PCSK9 were modeled, and numerous virtual subjects were developed and validated against clinical data.
View Article and Find Full Text PDF