Publications by authors named "P J Chitnis"

Rehabilitation from musculoskeletal injuries focuses on reestablishing and monitoring muscle activation patterns to accurately produce force. The aim of this study is to explore the use of a novel low-powered wearable distributed Simultaneous Musculoskeletal Assessment with Real-Time Ultrasound (SMART-US) device to predict force during an isometric squat task. Participants (N = 5) performed maximum isometric squats under two medical imaging techniques; clinical musculoskeletal motion mode (m-mode) ultrasound on the dominant vastus lateralis and SMART-US sensors placed on the rectus femoris, vastus lateralis, medial hamstring, and vastus medialis.

View Article and Find Full Text PDF

Objective: Wearable ultrasound is emerging as a new paradigm of real-time imaging in freely moving humans and has wide applications from cardiovascular health monitoring to human gesture recognition. However, current wearable ultrasound devices have typically employed pulse-echo imaging which requires high excitation voltages and sampling rates, posing safety risks, and requiring specialized hardware. Our objective was to develop and evaluate a wearable ultrasound system based on time delay spectrometry (TDS) that utilizes low-voltage excitation and significantly simplified instrumentation.

View Article and Find Full Text PDF

Wearable ultrasound has the potential to become a disruptive technology enabling new applications not only in traditional clinical settings, but also in settings where ultrasound is not currently used. Understanding the basic engineering principles and limitations of wearable ultrasound is critical for clinicians, scientists, and engineers to advance potential applications and translate the technology from bench to bedside. Wearable ultrasound devices, especially monitoring devices, have the potential to apply acoustic energy to the body for far longer durations than conventional diagnostic ultrasound systems.

View Article and Find Full Text PDF

Indocyanine green (ICG) is an FDA approved dye widely used for fluorescence imaging in research, surgical navigation, and medical diagnostics. However, ICG has a few drawbacks, such as concentration-dependent aggregation and absorbance, nonspecific cellular targeting, and rapid photobleaching. Here, we report a novel DNA-based nanosensor platform that utilizes monomers of ICG and cholesterol.

View Article and Find Full Text PDF

Fluorescence and photoacoustic imaging techniques offer valuable insights into cell- and tissue-level processes. However, these optical imaging modalities are limited by scattering and absorption in tissue, resulting in the low-depth penetration of imaging. Contrast-enhanced imaging in the near-infrared window improves imaging penetration by taking advantage of reduced autofluorescence and scattering effects.

View Article and Find Full Text PDF