Publications by authors named "P J Bratt"

Tryptic digestion of the 150-residue human acidic salivary proline-rich protein 1 (PRP-1) generated eight peptides, two of which corresponded to the N-terminal 30-residue segment. In each of the other six tryptic peptides, a consensus repeat with the structure PQGPPQQGG was present. A facile Gln-Gly cleavage between the second and the third residues of the repeat was observed during collision-induced dissociation experiments.

View Article and Find Full Text PDF

The aim of the present study was to identify salivary molecules affecting adhesion of Candida albicans and Candida krusei to salivary pellicles and epithelial cells. Strains of C. albicans (GDH18, GDH3339, CA1957, ATCC 28366 and ATCC 10321), but not C.

View Article and Find Full Text PDF

This study suggests degradation of salivary acidic proline-rich proteins (PRPs) into potential innate-immunity-like peptides by oral Streptococcus and Actinomyces species. PRP degradation paralleled cleavage of Pro-containing substrates. PRP degradation by S.

View Article and Find Full Text PDF

Human acidic proline-rich salivary protein PRP-1 and its C-terminally truncated form PRP-3 were analyzed by electrospray tandem mass spectrometry. Post-translational modifications were detected and characterized. A pyroglutamic acid residue was demonstrated at the N-terminus, Ser-8 and Ser-22 were shown to be phosphorylated and an O-linked glucuronic acid conjugation was identified.

View Article and Find Full Text PDF

Adherence of Actinomyces naeslundii ATCC 12104 to hydroxyapatite beads coated with protein fractions of parotid saliva, obtained by gel filtration on S-200 HR columns, showed GalNAcbeta1-3Galalpha-O-ethyl-inhibitable binding to high-molecular-weight proteins (Strömberg et al., 1992). The present study investigates the nature of these high-molecular-weight binding proteins and determines their specific ability to mediate adherence to representative strains of Actinomyces species.

View Article and Find Full Text PDF