Relativistic electron-positron plasmas are ubiquitous in extreme astrophysical environments such as black-hole and neutron-star magnetospheres, where accretion-powered jets and pulsar winds are expected to be enriched with electron-positron pairs. Their role in the dynamics of such environments is in many cases believed to be fundamental, but their behavior differs significantly from typical electron-ion plasmas due to the matter-antimatter symmetry of the charged components. So far, our experimental inability to produce large yields of positrons in quasi-neutral beams has restricted the understanding of electron-positron pair plasmas to simple numerical and analytical studies, which are rather limited.
View Article and Find Full Text PDFBackground: Neuroprotective agents have the potential to improve the outcomes of revascularisation therapies in acute ischemic stroke patients (AIS) and in those unable to receive revascularisation. Afamelanotide, a synthetic α-melanocyte stimulating hormone analogue, is a potential novel neuroprotective agent. We set out to assess the feasibility and safety of afamelanotide for the first time in AIS patients.
View Article and Find Full Text PDFUnder the presence of strong electromagnetic fields and radiation reaction, plasmas develop anisotropic momentum distributions, characterized by a population inversion. This is a general property of collisionless plasmas when the radiation reaction force is taken into account. We study the case of a plasma in a strong magnetic field and demonstrate the development of ring momentum distributions.
View Article and Find Full Text PDFThe interaction of ultraintense laser pulses with solids is largely affected by the plasma gradient at the vacuum-solid interface, which modifies the absorption and ultimately, controls the energy distribution function of heated electrons. A micrometer scale-length plasma has been predicted to yield a significant enhancement of the energy and weight of the fast electron population and to play a major role in laser-driven proton acceleration with thin foils. We report on recent experimental results on proton acceleration from laser interaction with foil targets at ultra-relativistic intensities.
View Article and Find Full Text PDFObjective: The primary objective of this study was to assess clinical outcomes in patients with oligometastatic prostate cancer recurrence after single or repeated salvage radiation treatment.
Methods: Forty-nine consecutive prostate cancer patients diagnosed with oligometastatic recurrence on Ch-PET have been prospectively treated. Seven (23%) patients had castrate-resistant disease.